
I
1. Title and Subtitle 5. Report Date
Derformance Analysis of the Unitree Central File

$ 9
\ 6. Performing Organization Code

’. Author@)
Idysseas 1. Pentakalos 7

8. Performing Organization Report No.

7. Key Words (Suggested by Author(s))

” 10. Work Unit No.
1. Performing Organization Name and Address

18. Distribution Statement

Jniversity of Maryland Baltimore County
302 Administrative Building, 1000 Hilltop Circle
3altimore, Maryland 21 250-5394

9. Security Classif. (of this report) 20. Security Classif. (of this page)
Unclassified Unclassified

USRA subcontract No. 5555-24

21. No. of Pages 22. Price
1

2. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
August 1993 - May 1994

Final
National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA Goddard Space Flight Center
Greenbelt, MD 20771

14. Sponsoring Agency Code

f

5. Supplementary Notes -,-I;
This work was performed under a subcontract issued by

Universities Space Research Association
10227 Wincopin Circle, Suite 21 2
Columbia MD 21 044 Task 24 y r I

6. Abstract >,***.* ,

This report consists of two parts. The first part briefly comments on the documentation
status of two major systems at NASA’s Center for Computational Sciences, specifically
the Cray C98 and the Convex C3830. The second part describes the work done on
improving the performance of file transfers between the Unitree Mass Storage System
running on the Convex file server and the users workstations distributed over a large
georgraphic area.

hierarchical mass storage systems Unclassified--Unlimited

Final Report to NASA on ALIBI

David Flater, CESDIS

4/22/94

SUMMARY

ALIBI (Adaptive Location of Internetworked Bases of Information) suc-
ceeds in locating and retrieving information over the Internet without the
use of centralized resource catalogs, navigation, or costly searching. Its
powerful query-based interface eliminates the need for the user to connect
to one network site after another to find information or to wrestle with
overloaded centralized catalogs and archives. This functionality was made
possible by an assortment of significant new algorithms and techniques,
including classification-based query routing, fully distributed cooperative
caching, and a query language that combines the practicality of Boolean
logic with the expressive power of text retrieval. The resulting informa-
tion system is capable of providing fully automatic resource discovery and
retrieval access to a limitless variety of information bases.

1 Introduction
The Internet has been one of the most important contributions to the modern comput-
ing environment. It has had a considerable impact on the way that many individuals
and companies conduct their daily business. Although it has remained fairly stable
despite an exponential rate of growth, some applications have suffered more than
others. One application that has suffered quite a lot is the use of the Internet as a
source of information - what some would call a digital library.

When the number of public archives on the net became large, the resource discov-
ery problem arose[l]. Users found themselves navigating file system after file system
with FTP in search of specific files and having diminishing success at finding them.
Riding to the rescue was Archie[2, 31, a centralized catalog that simply compiled the
names of files in the directory trees of participating archives. Users who knew the
name of the file they wanted could search Archie to find an accessible copy, then use
FTP to retrieve it.

As the Internet continued to grow, Archie began to bog down. The volume of data
that needed to be catalogued and the volume of queries over that data made rapid

1

response impossible during peak usage, even with replication of the Archie database.
However, the more significant problem was with the database itself. It contained only
filenames. Although Archie helped users to find files once they knew the names of
those files, it did not support any kind of content-based searching. With the huge
volume of data available on the Internet constantly growing, it became more and more
likely that any given piece of information was out there somewhere, but we lacked
the ability to find it.

A complete solution to this problem has not yet appeared in the Archie system.
A whatis database was added that permitted centralized indexing of software with
brief descriptions, but it does not seem to have reached critical mass. At any rate,
given the tendency of the filename database to bog down, wk can easily imagine how
much worse the situation would be if every file in the filename database also had an
entry in the whatis database.

Centralized indexing cannot be the answer to the resource discovery problem in
the Internet. Although its growth will eventually slow from an exponential to a
geometrical rate once the number of Internet addresses per capita reaches the limit
of convenience, it is already too big for centralized indexing and it is still growing
exponentially. Decentralized tools like WWW[4,5], Gopher[G] and WAIS[3,7] resulted
in part from our experiences with Archie. Unfortunately, in trying to solve some of
the fundamental problems faced by decentralized systems, many of the new tools have
re-introduced centralized indexing in some form or another. Each of them has been
successful so far, but the indices are growing, and the costs are again mounting.

With this work, we offer a new alternative to centralized cataloging of resources,
navigational resource discovery, direct manual file transfer, and massive centralized
archives. Our alternative is named ALIBI, for Adaptive Location of Internetworked
Bases of Information. To support networked resource discovery and information re-
trieval without resorting to any of the problematic techniques that have limited other
systems, it was necessary for us to develop an entirely new approach. A combination
of novel algorithms and careful design, developed in advance and improved along the
way to the final implementation, made possible the software system we now have.

ALIBI consists of a network of information servers and a collection of information
bases. The information bases are affiliated with individual information servers. The
network of ALIBI, running as an application layer above the Internet, is called the
Ubernet. The servers are called Unetds (Ubernet daemons). ALIBI offers all of the
following services in a single system:

0 Completely Automatic Resource Discovery

The information servers accept queries from users (via a client program) and
either arrange for them to be answered by the information bases affiliated with
them or forward the queries to other servers that might be able to do so. Users

2

provide queries that describe what they want, and the information system at-
tempts to locate and fetch it. Users do not need to indicate the source of
the information they desire, traverse a hierarchical file system, or navigate
a hyperdocument to get to the information. Large, centralized archives and
meta-indices are unnecessary because ALIBI locates the data wherever they lay
without user assistance.

0 Fully Distributed Resource Discovery

ALIBI finds information without the use of any centralized services or algo-
rithms. A special, fully distributed point-to-data routing algorithm is used by
each site to forward queries towards the data they seek[8]. Neither broadcast-
ing of queries nor broadcasting of metadata are required to support the routing
of queries. The information used to route queries is gleaned from resource
providers and from response messages as they are passing through on their way
to the sites that requested the information. Direct contact with distant sites is
not needed.

0 Cooperative Caching

Some of the waste and redundancy present in file transfers today is eliminated
by ALIBI’S resource discovery mechanism, since it is likely to find the closest
available source of data. Much of the remaining waste and redundancy is elimi-
nated by ALIBI’S integrated cooperative caching[9]. Not only are retrieved data
cached for reuse at the same site, they are cached cooperatively by groups of
sites for the common good of all. The fully distributed caching mechanism uses
cache space at underutilized sites to help out sites that are overburdened. The
administrator at each site is free to choose how much cache space to provide;
the system automatically adjusts to tolerate imbalances.

0 Arbitrary Topology Information Network

The list of sites hosting the information servers with which the local server
should attempt to communicate must be provided by the local administrator.
However, providing this list should not cause stress to anyone. It is not nec-
essary to update the lists on both sides of a connection for the connection to
be established; neither is it necessary to update the list whenever neighboring
sites (those with which there is direct communication) appear or disappear. All
this is sorted out automatically and transparently by the servers. Both the
point-to-point and point-to-data routers are topology-independent. Although
it is recommended that geographically nearby sites are chosen as neighbors in
the information network, the administrator has complete freedom to choose

3

whichever and however many sites he or she sees fit. Connections that offer
poor performance are simply disused by the information system.

0 Self-Maintaining Information Network

The query router and other ALIBI components automatically adapt to shifting
network topology. Broken connections are taken in stride, and periodically the
effort is made to re-establish them. The abrupt appearance and disappearance
of information servers does little to disrupt the normal operation of the infor-
mation system as a whole. Unlike WWW/Mosaic and Gopher, ALIBI is not
phased by a missing information base. It simply locates an alternate without
bothering the user.

0 Optimized Information Flow

ALIBI routes response messages along the paths of least delay. The routing
of query messages is patterned after the routing of response messages to the
extent that the same low-cost paths are used. Since these paths conform to the
characteristics of the underlying network and not to the unrelated topology of
the information space, queries do not zigzag across long distances to locate data.
Because of the flexibility of ALIBI’S routing mechanisms, ALIBI is sometimes
able to move data more reliably than direct FTP or telnet by avoiding unreliable
chunks of the network.

2 The ALIBI Information System

2.1 Resource Model
A key step in the development of ALIBI was determining a resource model. We needed
to decide exactly what was the best way to partition the work between the general-
purpose information servers and the domain-specific mediators[101 that would access
individual information bases. Our goal was to find an orthogonal, flexible model
that would simplify the task of installing new mediators as more diverse information
bases became available, but without placing unnecessary restrictions on the nature
or complexity of the mediators.

The format of queries given to ALIBI was originally a list of keywords or sim-
ple English. A “junk words” list was used to eliminate irrelevant English verbiage
from the query, a global thesaurus was used to replace query terms with standardized
equivalents, and the query was then passed to the mediators to match as many key-
words as possible using whatever mechanisms they chose to employ. As the system
grew larger and we began to think about how to incorporate some non-fuzzy Boolean

4

Figure 1: ALIBI’S Layered Information System Model

... \ f
I

Information
Servers ...

x$h Information Bases n / A
logic into the query language, it became clear that our approach was inadequate. Too
much work was being done by the servers. Thesaural translation is a task that must
be done within the specific domain of a particular information base, not a t the global
level. Furthermore, it is unsafe to remove “junk words” from a query in a global in-
formation system such as ALIBI. They might be acronyms for something important,
or they could be significant in another language.

Since it was obvious that major changes would be needed, we scrapped our existing
interface and rebuilt it based on a coherent resource model. This investment of time
and effort quickly paid for itself with much easier development and installation of
mediators.

Our resource model requires the following definitions:

1. Mediators

A mediator is an entity that communicates with an information server to provide
access to a single logical resource (information base). The mediator might
actually coalesce several physical resources into a single logical resource, but this
action is transparent to the information server. Each information server may be
connected to any number of mediators, but there would be little advantage in
having a mediator communicnt,e wit,h miiltiple information servers when those
servers can communicate with one another.

J

2. Object Identifiers

An object identifier, or OID, uniquely identifies a single datum in the entire
information system. The mediator for the information base containing that
datum must be able to retrieve the datum when presented with its OID. For
the purposes of the resource interface, the OID would only need to be unique
within each resource, since it is not necessary for any external components to
be able to locate the resource given only an OID. However, OIDs have other
uses that do require global uniqueness.

3. Subqueries

A subquery is a list of keywords that can be processed by the mediator to
yield the set of OIDs identifying data in its information base that “match” the
subquery.

4. Matching

A datum matches a single keyword if it has a very high degree of relevance to
that keyword according to the domain-specific logic used by the mediator. A
datum matches a subquery if it has a very high degree of relevance to each of the
keywords in the subquery. This insures that adding more terms to a subquery
will make it more specific.

5. Queries

A query is something that is processed by an information server, not by a
mediator. Mediators only need to respond to subqueries. The query language
understood by the information server can be arbitrarily complex.

In theory, one could simplify matters even more by defining subqueries to be
single keywords and forcing the conjunctive logic to be performed by the information
server. In practice, this would be extremely inefficient for large information bases, and
any semantics that the information base might give to associations between several
keywords could no longer be useful.

A resource is modeled as an entity that provides the following minimal set of
services:

1. Process a subquery

When presented with a subquery, the mediator must return a set of OIDs that
identify matching data.

6

2. Fetch and classify a datum

When presented with an OID that it earlier returned in response to a subquery,
the mediator must return the datum that the OID identifies along with an
accurate classification of that datum.

3. Declaration of class (optional)

The resource may inform the information server of the class of data it contains.
The information server can then save time by not processing queries against
resources that contain the wrong kind of data.

This minimized resource model is powerful enough to support many non-trivial
forms of information retrieval, including that of ALIBI. The query language processed
by ALIBI information servers is described in the next section.

2.2 Processing and Routing of Queries
Our query language has the rare quality of combining fuzzy and non-fuzzy semantics
in a coherent manner. It was designed to allow simple implementation, rather than
user-friendliness, but it would not be a major task to have the client translate from
a more intuitive format. The elements of the language are:

0 Subqueries between parenthesis: (cache software)

0 Individual OIDs in brackets: [obj ect-key host-id obj ect-version]

0 Binary AND operator: &

0 Binary OR operator: I

0 Unary NOT operator:

Expressions are built with postfix ordering[l 11, so disambiguating parenthesis are
not needed. The ability to specify particular OIDs in queries was included specifically
to support the implementation of a more command in the client. If the datum iden-
tified by [O I D l were returned in response to (sound) (index)’”& and the user typed
“more,” the query (sound) (index) ”& [OID] ”& would automatically be submitted.
Repeated use of the more command adds additional clauses to the query until finally
there are no more data to be returned and the query fails. This automatic query con-
struction gives the user a simple way to retrieve more data like the one just retrieved
whik preserving the simplicitmy of the query processor.

To process a full query, the information server sends the subqueries to the infor-
mation base to be replaced with sets of OIDs, performs Boolean operations on these

7

J

sets to produce a single set of OIDs, and, if the resulting set is not empty, instructs
the information base to retrieve one of the data identified by an OID in the set. If
there are multiple OIDs in the final set, one is chosen at random by the information
server. The user is free to retrieve the others using the more command.

Accurate routing of queries is accomplished by sending queries towards sites that
have answered similar queries in the past. The query classification algorithm, which
determines this similarity, operates by examining the query for keywords that it
recognizes. Data classes in ALIBI are specified by lists of keywords having decreasing
significance, such as “blob software msdos.” For this example, “blob” is the major
class of data.’ “Software” is a type of blob, and “msdos” is a type of software. Each
word thus adds additional specificity to the more general class preceding it. Classes
can be generalized by simply removing words from the end. Although a hierarchical
class structure has its limitations, we were forced to make a decision when ALIBI was
ready for implementation, and this is what we chose as the most practical approach.

“U” is defined to be the universal class, of which all others are a subclass. All
classes except “U” can be considered to have an implied “U” at the beginning, and
sufficient generalization of any class eventually results in “U.”

2.3 Mediation
Each information base or resource is made available to ALIBI by a mediator connected
to a single Unetd. Whatever operations are necessary to translate ALIBI subqueries
into queries that are understood by the information base are done by the media-
tor. The protocol spoken by Unetd to its mediators is extremely simple, consisting
of a RESET command, a FETCH command, and subqueries that are just lists of
keywords. Mediators respond to subqueries and FETCHes with lists of object iden-
tifiers and raw data. They also have the ability to declare the specialty (class) of the
provided resource to Unetd so that they will not be bothered with irrelevant queries.

In order to open a communication channel with the information server, the me-
diator creates and opens two named pipes in the directory used by Unetd.2 Unetd
periodically scans its directory for named pipes. When it finds them, it opens them
and immediately unlinks them. The pipes then disappear from the file system, but
continue to exist as channels of communication through memory. The resource is
then available to Unetd.

OIDs are unique in the entire information system because they are constructed
with three fields: an object key provided by the information base, the network address

‘Blob is an acronym for “Binary Large OBject.” The creator of this acronym is unknown to us,

’The semantics of Unix pipes force us to open both of them in “read-write” mode to avoid being
but it is used by some SQL databases that have multimedia support.

blocked, even though one is used exclusively for reading and the other for writing.

8

of the site running the information server connected to the information base, and a
version number or timestamp used to distinguish older and newer versions of the same
data object. An example of an OID is

[/home/faculty/alibi/blobs/sound/OO-index.txt -2108333000 7540877621

The first field, the object key, in this case is the full path name of the file being
referenced. The resource that produced this OID is a generic “blobs” resource that
simply treats entire files as individual data, so the full path name of the file makes a
perfect object key. The next field is the Internet address of the machine running the
server, daisy.cs.umbc.edu, output as an integer. The last field, the version number or
timestamp, is the time at which the file was last modified according to the Unix stat
function, expressed in seconds since 0O:OO:OO GMT 1/1/70 as is the Unix tradition.
The format of the first and third fields will vary from one information base to the
next, but the interpretation is the same: the first field is character data that identifies
the data object, the last field is a number such that a higher number in the third field
with the first and second fields being identical indicates a newer version of the same
datum.

3 Example Resources

3.1 Cache Resource
The cache resource is always at the head of the resource list and the first to be checked
for needed data. It is not an external process, but in most other respects it appears
to the resource manager like any other resource. From the perspective of the resource
manager, the only special thing about the cache is that a different function call is
used to communicate with it. Although the fact that the cache has type “U” instead
of something more specific is unusual for a resource, it is not inconsistent.

The function call provides one parameter to the cache resource that is not given
to remote resources: the classification of the query. Most resources do not need this
since they declare themselves to have a specific type and they are guaranteed nbt
to be bothered with queries that are not even close. The cache, on the other hand,
has no particular type but needs to match the query with replicas (cached responses)
that are of the correct class. Most resources have the advantage of domain-specific
knowledge to assist with matching queries to data; the cache has no such advantage.

When presented with a subquery, the cache returns the OIDs of all replicas with
2 matching class whcse descriptions centain every keyword in t4he siihqiiery, with
the exception that keywords constituting part of the query’s class are considered to
have been matched already. It would be risky to use a fuzzy matching algorithm

9

Figure 2: A Session with ALIBI

Enter a query now, or enter 'quit' to quit
(msdos cache software)

Waiting for reply
Response created at zing.ncsl.nist.gov Sun Apr 17 09:25:24 1994
Response path: zing.ncsl.nist.gov topdog.cs.umbc.edu greyhound.cs.umbc.edu
This datum has been in cache since Fri Apr
Response created at retriever.cs.umbc.edu Fri Apr
The following datum was provided by a blobs resource.
ID : /net/wuarchive . wustl . edu/archive/systems/ibmpc/msdos/diskutil/pckwk319. zip
Class: blob software msdos diskutil
Description: pckwk319 zip B 16358 890625 PC KWIK shareware disk cache

Binary data follows ... 16358 bytes, filename pckwk319.zip
Warning:
Choose filename in which to save response Cpckwk319 .zip] :
Saving response
Query path: greyhound.cs.umbc.edu zing.ncsl.nist.gov
St art time : 766589093
Answer for 185 at greyhound.cs.umbc.edu
Have a nice day = I -)

Enter a query now, or enter 'quit' to quit.
more
(msdos cache software) [/net/wuarchive .wustl . edu/archive/systems/ibmpc

8 13:09:08 1994
8 13:08:40 1994

-2108333024 614736000

program v3 19 diskutil

existing files will be appended without further warning

/msdos/diskutil/pckwk319. zip -2108333024 6147360001 -&

Waiting for reply. . . .
Response created at retriever.cs.umbc.edu Sun Apr 17 09:25:37 1994
Response path: retriever.cs.umbc.edu greyhound.cs.umbc.edu
The following datum was provided by a blobs resource.
ID: /net/vuarchive .wustl . edu/archive/systems/ibmpc/msdos/diskutil/cacheart. zip
Class: blob software msdos diskutil
Description: cacheart zip B 13858 880829 Review of disk cache programs

Binary data follows ... 13858 bytes, filename cacheart.zip

-2108333024 588816000

diskut il

Warning:
Choose filename in which to save response [cacheart .zip] :
Saving response
Query path: greyhound.cs.umbc.edu topdog.cs.umbc.edu zing.ncsl.nist.gov

existing files will be appended without further warning

sunset.ncsl.nist.gov retriever.cs.umbc.edu
126
greyhound.cs.umbc.edu
-1

Start time: 76658
Answer for 185 at
Have a nice day =

Enter a query now
quit

or enter 'quit' to quit.

10

for the cache since it is general-purpose; it is not risky for other resources to use
domain-specific thesauri to help with matching.

The class of a query is considered to match the class of a replica if the query class
is the same as or a generalization of the class of the replica, or if either class is “U.”

3.2 Blobs Resource
For our first real resource, we implemented a generic blobs resource that could be
used to turn any collection of indexed files into an information base. We have
used this mediator with an NFS connection to provide the MS-DOS subtree of
wuarchive.wustl.edu, using the index files that were already there. The only cus-
tomizations were to parse the slightly different format of wuarchive’s index files and
to generate resets when repeated NFS failures occurred. Isolated retrieval failures
are assumed to mean that the index is out-of-date, and the relevant index entries are
deleted. Repeated failures indicate an NFS outage, so the mediator informs Unetd
that it is “down” until it succeeds in establishing a new connection and rebuilding its
index.

We are also using the blobs resource to provide a group of image files a t NASA
GSFC. This time, we needed to customize the mediator to add some additional lines
to response messages that explain the copyrights on the files that were generated by
employees of IBM. A collection of sound files at UMBC and an archive at NIST are
being provided using the unmodified mediator.

Since the blobs resource is generic, non-fuzzy retrieval is the default. To generate
internal descriptors against which to match query terms, the complete path and name
of the file and any descriptions found in indices are concatenated and all punctuation
marks are removed. When the blobs resource is applied within a domain, as we have
applied it to MS-DOS software at wuarchive, the stock retrieval mechanism can be
upgraded to a domain-specific fuzzy retrieval method. MS-DOS and NASA thesauri
are on the agenda when time becomes available.

The type that a blobs resource declares for itself (“blob software msdos” for
wuarchive) is augmented by the directory names in the path to a file in order to
form the classification for that file. The path is relative to whatever directory is spec-
ified as the “root blob directory.” For wuarchive via NFS, /net /wuarchive.wustl.edu
/archive /systems /ibmpc /msdos is the root blob directory. A file appearing in /net
/wuarchive.wustl.edu /archive /systems /ibmpc /msdos /gnuish is therefore classified
as “blob software msdos gnuish.”

11

Figure 3: Header comments from ppmt0gif.c

/*
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
*/

ppmtogif .c - read a portable pixmap and produce a GIF file

Based on GIFENCOD by David Rouley <mgardiQwatdscu.waterloo.edu>.A
Lempel-Zim compression based on "compress".

Copyright (C) 1989 by Jef Poskanzer.

Permission to use, copy, modify, and distribut. this software and its
documentation for any purpose and without fee is hereby granted, provided
that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.
implied warranty.

This software is provided "as is" without express or

The Graphics Interchange Format(c) is the Copyright property of
CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated.

3.3 Usenet News Resource
The Usenet news resource turns newsgroups into information bases. Since we did not
have direct access to the news spooling directory at any site, we implemented this
resource using NNTP (Network News Transfer Protocol). All information is fetched
remotely from an NNTP server. As ALIBI grows, we hope that we will be allowed to
access one or more news spools directly to enhance performance.

Query keywords are matched against descriptions that contain the subject lines
from news articles along with the names of the newsgroups to which those articles
belong. Matches between subqueries and descriptions are made by the same algorithm
used in the blobs resource. General queries match the description words derived from
the names of newsgroups; specific queries match the description words derived from
subject lines. The internal index of descriptions is periodically refreshed to keep up
with the appearance of new articles and the expiration of old ones.

OIDs are formed by making the first field a combination of newsgroup and article
number and making the version always zero. The version is not necessary because
netnews assigns article numbers in a serial fashion, even when a new article supersedes
an old one. Our decision to combine article number and newsgroup to form the
ID instead of using the unique article IDS assigned by netnews was a matter of

12

programming convenience and efficiency. It would not make much sense in ALIBI
to have multiple sites providing the same newsgroups, so there is no harm in using
this kind of OID.

Classifications for articles are formed by prepending “news” to the list of words in
the name of the applicable newsgroup. For example, all articles in alt.po1itics.correct
are classified as “news alt politics correct.” We adopt the netnews hierarchy as a
subtree of our classification system in the same way we adopted the directory structure
of blob archives.

3.4 Software Reuse Library
As an example of how diverse kinds of retrieval can be supported by ALIBI, we
modified the blobs resource to create a primitive software reuse library for C language
source code. In the past, work has been done to support the retrieval of source code
using variations on methods employed by full-text retrieval systems[l2]. To avoid the
need to re-implement these complex algorithms for the sake of a single, prototype
mediator, we settled for the simple heuristic of extracting the first nontrivial line of
a * . c or *. h file to serve as a descriptor. Quite often, the comments at the head
of a program begin with a one-line description of the program. For example, the
beginning of the ppmtogif . c source file from the PBMPLUS distribution is shown in
Figure 3.

The line “ppmt0gif.c - read a portable pixmap and produce a GIF file” is read
by the mediator and used to index ppmtogif .c. Although this heuristic only works
when the programmer follows the convention of starting the program with a one-line
description, it suffices for the purpose of demonstrating ALIBI’S ability to support
software reuse. It also serves as a trivial example of how automatic indexing can be
used by ALIBI resources having specialized domains.

The classification of data and assignment of OIDs by the source code resource are
identical to what is done by the blobs resource.

3.5 SEC EDGAR Resource
EDGAR is a public FTP archive that was recently opened at town.hall.org. It con-
tains the electronic versions of forms filed with the SEC (Securities and Exchange
Commission) by companies in the U.S. The names of the files containing the forms
are cryptic, but the files are indexed by company name in a separate index file. We
modified the blobs resource to access the EDGAR database with anonymous FTP.

When it is reset, the Edgar mediator FTPs the index and reads it into memory.
Subqueries are then matched against company names. Matching files are retrieved

13

Figure 4: Sample Response from FIPS 55-2 Geographical Database

Response created at sunset.ncsl.nist.gov Tue Mar
Response path: sunset.ncsl.nist.gov cesdis7.gsfc.nasa.gov

The following datum was provided by the NIST FIPS 55-2 Geographical

Thanks go t o Henry Tom for this database.
ID: 6911 -2130298111 0
Class: government USA census geography VA
Description: Wolf Trap Farm Park For The Performing Arts
FIPS 55-2 Record:

Performing Arts 059Fairf ax 22180 8840 1110
A brief summary of the significant features of this record follows.
-
- It’s a federal facility
- It is in the state of VA
- Its county is Fairfax
Query path: retriever.cs.umbc.edu cesdis7.gsfc.nasa.gov
sunset.ncsl.nist.gov

Start time : 763152827
Answer for 16 at retriever. cs . umbc . edu
Have a nice day =I->

8 13:53:19 1994

dunloggin.gsfc.nasa.gov greyhound.cs.umbc.edu retriever.cs.umbc.edu

Database (Virginia)

5187256VA 1 lM4Wolf Trap Farm Park For The

The place is called Wolf Trap Farm Park For The Performing Arts

14

using FTP and given to the Unetd as blobs. Although the information is all textual,
most of the forms are large enough that it is better to treat them as blobs.

All data fetched from the EDGAR database are classified as “government USA
SEC EDGAR.” OIDs consist of the relative pathname of the file, the host ID, and a
null version number since individual forms are never altered.

3.6 Geographical Database
Henry Tom of NIST provided us with a geographical database conforming to FIPS
55-2. The format specified by FIPS 55-2 is a flat file containing 132-character records
divided into fixed-length fields. The Edgar mediator was the basis for the FIPS 55-2
mediator since it had already been substantially simplified from the blobs mediator.

The FIPS 55-2 mediator matches subqueries against place names and returns
individual records from the database, along with a brief explanation of what they
mean. A FIPS 55-2 record contains a substantial amount of encoded information.
The entire record is provided as part of the response, but only the most significant
fields are explained by the mediator. An example is shown in Figure 4. The 132-
character record has been broken up to fit on the page.

Responses are classified as “government USA census geography” followed by the
post office abbreviation for the state to which the records pertain. At the time of
this writing we only have the data for Virginia on line, but this will probably change.
OIDs are constructed by assigning a unique serial number and a null version number
to each record.

4 ALIBI and NASA
ALIBI is a general-purpose system, but it could be especially valuable to NASA if it
were so applied. Some of the things that ALIBI could do for NASA are:

1. Make Information Available to the Public
To adapt to the changing needs of the U.S., NASA has been seeking ways to
make its services useful to the general public. ALIBI provides a simple interface
that everyday people could use t,o access NASA’s vast archives without having
technical skill or knowledge of those archives. Mediators could be constructed
for NASA databases that would respond to queries that everyday people could
formulate. This task is significantly simpler than trying to construct an entire
information system specifically for NASA; ALIBI already provides the software

and can be added in a modular fashion. Already we have a small image archive
at NASA GSFC available through ALIBI.

., ;llll L.., -tl,. uLtiirc to sfipport public retrieval. Mediaters are simple tc! const.riuct.

15

2. Provide Unified Access to Diverse and Distributed Data

NASA has been looking for ways to simplify access to its many different kinds
of data that are stored in many different places. ALIBI could achieve this goal.
Unlike other systems, ALIBI does not require the data to be translated into a
standard format for them to be made available. For each different database,
only the mediator needs to be customized, and this effort is minimal because of
ALIBI’S modular resource interface.

3. Facilitate Distribution of Centralized Databases

NASA has a number of databases that are extremely large. It may be beneficial
to break these large databases into many smaller databases that would be unified
by ALIBI. ALIBI is better equipped to handle large amounts of distributed data
than any distributed database, and it may be the solution to previously unsolved
problems in data distribution.

4. NASA-Specific Resource Discovery

An independent ALIBI network could be set up inside NASA to help locate and
distribute internal information. This would have beneficial effects for software
reuse, organizational communication, and research. However, some security
enhancements will be needed to prevent private data from leaking out of NASA
if the local network permits access from the outside.

5 ALIBI vs. Other Approaches

ALIBI is not the only tool capable of handling the diverse types of information that we
have described, but it is the only one to support fully automatic resource discovery.
Table 1 shows how ALIBI compares with other tools that are currently available.
Our categories for each tool are the resource discovery mechanism it uses to find
appropriate sites, the retrieval mechanism used to select and fetch individual data
once a site is found, the kind of optimization used to enhance performance, the
method used to determine the metadata for resource discovery, and the inherent bias
of the system in terms of what kind of data it most easily handles.

In the first column, we see that ALIBI is the only system with automatic resource
discovery. Archie makes it possible to search a filename index (or the whatis database)
to try to locate something; as the prototype of all centralized catalog approaches to
resource discovery, Archie defines the Archie syndrome. When centralized indexing
is used to solve the resource discovery problem in a growing, decentralized system,
the Archie syndrome results. The index becomes an unavoidable bottleneck. The
Archie syndrome keeps being repeated because the problems with centralized indexing

16

Table 1: ALIBI compared with other tools

Tool
Archie
WAIS
Gopher,
Veronica

Discovery Retrieval Optimization Metadata Bias
AS N/A (FTP) Replication Refresh Filenames
AS FT Replication N/A Text
Navigation, Navigation, FT Caching, Static Hierarchical
AS ReDlication

WWW
ALIBI

AS = Archie Syndrome (search central index for relevant sites)
FT = Full-Text retrieval (inverted index keyword search)

Navigation Navigation, FT Caching Static Hypertext
Automatic Flexible Distrib. Caching Dynamic Atomic Data

only become apparent after the system reaches critical mass, and the exponential
growth of the network is transformed into exponential index growth. WAIS incurs
the Archie syndrome at the server selection stage; to find out which servers should be
searched for some data, the user must either browse through a long index of servers or
execute queries on a centralized catalog. Gopher supports resource discovery through
navigation (the equivalent of “manual” resource discovery); Veronica adds Archie-like
searches and the Archie syndrome to Gopher. The improved semantic linkage of the
Web has reduced the need for centralized indices, but several of them are already
available a link or two away from the NCSA home page, and Web users are taking
the initiative to create more.

ALIBI also offers a new and flexible retrieval method. Archie does not compete in
this arena since it is not a retrieval tool. WAIS is primarily a full-text retrieval system.
Gopher and WWW support full-text retrieval at specific servers once the resource
discovery step is complete; however, they also provide the ability to locate specific
data through more navigation. While ALIBI does not offer navigation, its two-tiered
query language supports more flexible retrieval than full-text alone. ALIBI subqueries
are interpreted by resource providers in a domain-specific manner, allowing many
alternatives besides traditional inverted index searching over a text-only database.

Moving on to the optimization column, both WWW and Gopher permit caching
to be done at a local server or by a client program. However, this caching is not
cooperative in the way that ALIBI’S caching is. In the Ubernet, if one site generates
many queries while a nearby site is idle, that site will accumulate cached replicas of
responses for the busy site. Queries from other sites that are routed through these sites
may also be answered from their caches. Gopher and WWW establish direct Internet
connections to archive sites, making cooperative caching impossible and causing well-
known archives to become overloaded. At the time of this writing, the “home page”

~

17

for WWW at NCSA begins with “[The] NCSA Web server is overloading due to
an exponential growth in connections.” Replication is also used to optimize the
performance of Internet tools. The centralized indices of Archie, WAIS, and Veronica
have been replicated to keep up with the growing user load. ALIBI’S caching effectively
performs dynamic replication[l3], creating more replicas of the data that are most in
demand.

The metadata used for resource discovery by the various Internet tools are main-
tained in different ways, to different degrees. Archie updates its metadata by periodi-
cally refreshing it. Although it is costly, this keeps the metadata from becoming stale
most of the time. The only WAIS metadata used for resource discovery is the index
of WAIS servers, which is maintained by a central registry. The directory services
embedded in Gopher and WWW presumably are refreshed like Archie, but most of
the other links used for navigation are static, persisting indefinitely after the refer-
enced data is removed and causing annoyance to users. ALIBI remains the exception,
silently recovering from stale metadata in query routing tables without bothering the
user and collecting metadata without incurring the cost of periodic refresh.

We do not intend to argue that stale metadata are a reason to choose ALIBI over
WWW. We believe that ALIBI’S fully automatic resource discovery and query-based
interface are a valuable alternative to resource discovery that requires navigation.
Instead of navigating to the correct site and retrieving data, or searching a catalog for
the correct site and retrieving data, ALIBI users simply retrieve the data. This results
in less work for the user and eliminates the network traffic generated by navigation
to faraway sites. Retrieval of data from distant sites is also reduced by ALIBI since
servers between them and the client (not just the endpoints) have a chance to cache
responses.

Finally, there is the issue of bias. Each information system has a bias for what
kind of data it most conveniently handles. It is not necessarily the case that they
cannot handle other types of data, but it is better to be biased towards more general
data types than more specific ones. Archie primarily indexes filenames. WAIS is
heavily biased towards full-text retrieval. Gopherspace consists almost entirely of self-
contained hierarchies at different sites with little non-hierarchical linkage, so we give
it a hierarchical bias. The Web has more non-hierarchical linkage and has multimedia
support with Mosaic, so we say that it has a hypertext bias. The bias of ALIBI is for
atomic data (self-contained data objects). For ALIBI to derive data from fragments
at many sites, a mediator must coalesce the fragments and present them to ALIBI as a
single object. However, the content of the data objects and the internal organization
of each information base are arbitrary.

18

Conclusions and Future Work
ALIBI provides a completely new approach to networked resource discovery and infor-
mation retrieval. In this paper we have given a brief overview of ALIBI’S functionality
and shown how ALIBI differs from the other systems. Those readers who would like a
more thorough and technical discussion of ALIBI and its components can get a copy
of the dissertation ((Towards a Global Federation of Heterogeneous Resources” from
the University of Maryland Graduate School, Baltimore.

Future work will include producing a more complex client, further optimization
of the distributed caching and classification algorithms, special handling of extremely
large data objects, additional mediator development, and an e-mail interface.

A ALIBI Quick Start
A1ibi.c is the client. The name of a host running a Unetd must be specified as the
command line argument to the client program. In this respect it works much like
t elnet . For example:

alibi dunloggin. gsfc. nasa. gov

To try out the client, FTP a1ibi.c from flater/soiirces on speckle.ncsl.nist.gov,
compile it, and run it against an existing Unetd site. A list of Unetd sites is available
on request from dave@ case50. ncsl. nis t .gov.

The client offers the following prompt when it is time to enter a query:

Enter a query now, or enter ’quit’ to quit .

A well-formed response can be an expression from the query language or the
special commands quit and more. Any other response will cause a brief help screen
to be printed. The quit command has the obvious interpretation.

Most queries will be keywords between parenthesis like this:

(cache software)

More complex queries can be built by combining keyword lists with the Boolean
operators &, I, and -. Postfix ordering is required, and parenthesis are to be used
only to delimit lists of keywords. The following query asks for data that match the
keywords “cache” and “software” but not “XMS:” (cache software) (XMS) “&.

After a we!!-f~rm& query is eatcrcd, thc F 10 11 T A n f i rnocc3no . I IbUUCub\ i o I“ n r ; n t J y’”’””“:

Waiting for reply

19

The client prints responses on the screen as they arrive from the Unetd. Embedded
binary data are handled by prompting the user for a filename and saving the data
to that file. Often a default filename will be provided that matches the name of the
file at the remote site that provided the response. Unwanted blobs can be saved to
/dev/null. The time needed for a reply to arrive will vary depending on the size
of the response, the amount of Internet and Ubernet traffic, the complexity of the
query, and what the mediators did with the query. If a response is too slow, the client
program can be suspended and brought back to the foreground later.

The special command more instructs the client to construct and submit a query
to retrieve more data like the one that was just retrieved. This is done by adding a
Boolean clause to the query that negates the OID of the previous response. Repeating
the more command will add more clauses to the query until all matching data have
been negated and a failure response is received.

If a query is entered that has no answer, a failure message will be returned indi-
cating “Either there’s no answer, or the answer is not available right now.”

The currently available information bases are: MS-DOS software at wuarchive;
rec.radio.shortwave, alt.politics.correct, *.unix.wizards; some sound files; some source
code (pbmplus); some papers and the ALIBI source code distribution; some images
from IBM and NASA GSFC; the entire EDGAR database from the SEC; a geograph-
ical database for all of Virginia.

Those wishing to start a new Unetd site can get the software distribution through
ALIBI or from speckle.ncsl.nist.gov in flater/sources. Send e-mail to dave@case50.ncsl.nist.gov
for help with installation.

References
[l] Michael F. Schwartz. The networked resource discovery project: Goals, design,

and research efforts. Technical Report CU-CS-387-88, University of Colorado,
Boulder, Colorado 80309, May 1988.

[a] Peter Deutsch. Resource discovery in an internet environment-the Archie ap-
proach. Electronic Networking, 2(1):45-51, Spring 1992.

[3] Katia Obraczka, Peter B. Danzig, and Shih-Hao Li. Internet resource discovery
services. IEEE Computer, pages 8-22, September 1993.

[4] T. J. Berners-Lee, R. Cailliau, J-F Groff, and B. Pollermann. World-Wide Web:
The information universe. Electronic Networking: Research, Applications, and
Policy, 2(1):52-58, spring 1992.

20

[5] Marc Andreessen. NCSA Mosaic technical summary. Technical report, Soft-
ware Development Group, National Center for Supercomputing Applications,
605 E. Springfield, Champaign IL 61820, May 1993. ftp.ncsa.uiuc.edu: /Mosaic
/mosaic-papers /mosaic.ps.Z.

[6] M. McCahill. The internet gopher. In Proceedings of the 23rd Internet Engineer-
ing Task Force, 1992.

[7] Brewster Kahle. think.com:/public/wais/README, September 1991.

[8] David W. Flater and Yelena Yesha. An efficient management of read-only data
in a distributed information system. International Journal of Intelligent and
Cooperative Information Systems, 2(3):319-334, 1993.

[9] David W. Flater and Yelena Yesha. Managing read-only data on arbitrary net-
works with fully distributed caching. International Journal of Intelligent and
Cooperative Information Systems, 1994. To appear.

[101 Gio Wiederhold. Intelligent integration of diverse information, In Proceedings of
the ISMM First International Conference on Information and Knowledge Man-
agement, pages 1-7, Baltimore, MD, U.S.A., November 1992. The International
Society for Mini and Microcomputers.

[ll] Robert L. Kruse. Data Structures and Program Design. Prentice-Hall, second
edition, 1987.

[12] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrieval
approach for automatically constructing soft ware libraries. IEEE Transact ions
on Software Engineering, 17(8):800-813, August 1991.

[131 Ouri Wolfson and Sushi1 Jajodia. Distributed algorithms for dynamic replication
of data. In SIGMOD '92, 1992.

21

Performance Analysis of the Unitree Central File
Manager at NASA’s Center for Computational Sciences

Part 11: New User Documentation and File Transfer
Performance Enhancements

Odysseas Ioannis Pent akalos

..
11

List of Figures
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

Gopher Main Menu . 6
Online Documentation Menu 7
Cray Information Menu 7
Unitree Information Menu 8
Software Information Menu 8
Hierarchical Storage Pyramid 16
UMSS Block Diagram . 17
Sequential Implement at ion 18
The Data Compression/Data Transfer Pipeline 18
Pro cess Interact ion During Compression 19
Process Interaction During Decompression 19
Hit-Ratio versus Compression Ratio 32
Number of Migrations versus Compression Ratio . . . 33
Bytes Migrated versus Compression Ratio 34
Silo/Sun/Convex Connectivity 53
Interface between Silos and the Convex 54
UCFM System Architecture 55
Directory Structure Representation by the Name Server 56
Fragment and Chain Pointers in File Header 57
Sequence of Operations in Serving an ftp put Command 58
Sequence of Operations in Caching a File 59
Format of File Data on Tape 59
Format of the Disk Partitions of the Tape Server

Request . 61
Sequence of Operations of a Migration Run

. . . 60
Sequence of Operations in Serving a Mount/Dismount

62

1

This report consists of two parts. The first part briefly comments on the
documentation status of two major systems at NASA’s Center for Computa-
tional Sciences, specifically the Cray C98 and the Convex C3830. The second
part describes the work done on improving the performance of file transfers
between the Unitree Mass Storage System running on the Convex file server
and the users workstations distributed over a large geographic area.

1 New User Documentation
Before we could proceed with evaluating the current performance of the sys-
tems at NASA’s Center for Computational Sciences (NCCS) and enhanc-
ing the performance of data transfers between the user’s workstations and
the Unitree Mass Storage System we had to familiarize ourselves with the
systems under consideration and with their configuration. The speed with
which a new user can familiarize himself with a new environment and start to
work productively depends on the quantity and quality of the documentation
available at the introductory level. There are two types of documentation
needed. First, the new user needs general documentation which describes the
operating system or applications used at that site. This type of documenta-
tion usually is developed by the vendor of the specific product whether its
an operating system or an application. Second, the user needs customized
documentation developed at the local site which describes the local configu-
ration of the computer systems, ways of accessing the systems, information
about getting an account, etc. V‘e will therefore, describe the documentation
available at each of the two categories described above at this local site.

The systems that we were interested in understanding were the Cray C98
and the Convex C3830. The NCCS Cray C98 runs the Cray Research, Inc.
UNICOS operating system. Its internet host name is charney.gsfc.nasa.gov
and its IP address is 128.183.37.16. The Convex C3830 is the storage server
and runs the ConvexOS version 11.0 which is BSD UNIX based operating
system. Its internet host name is dirac.gsfc.nasa.gov and its IP address is
128.183.39.23. Since our research work focused on the mass storage system it
was very important that we understood the operation of the Unitree Central
Manager (UCFM) which is a hierarchical storage system manager, running
as an application on dirac.

.

2

Starting from the Cray, the most useful document made available to us
was the “The NCCS CRAY Y-MP User Guide, version 1.0, December 1991”,
written by Patricia C. Cunningham and James R. Duncan. Even though
this document was relatively old and described a different Cray machine, the
information in it were general enough to make an excellent

source of information. Since this information was developed at NCCS
it falls under the second category described above but it includes enough
general information to make it the only necessary guide for a new user. It
includes the following chapters:

1. Introduction

2. Overview of NCCS computing resources: Describes the hardware and
software available at each of the systems at NCCS.

3. User Services: Talks about the Technical Assistance Group, how to get
in touch with them, training offered by them, etc. Also talks about
other documentation available and how to order it.

4. Accessing the CRAY Y-MP: Describes the various access points to the
Cray, such as the telephone lines, the network, and SprintNet.

5; Getting started in UNIX/UNICOS

6. Using UNIX shells

7. Using UNICOS compilers and loaders

8. Accessing software libraries: This is a site specific section which de-
scribes the libraries available and how to access them.

9. Using file space on the CRAY Y-MP

10. Tra.nsferring files

11. Long-term file storage

12. Running jobs

3

14. Editing files

15. Printing files from the CRAY Y-MP

16. Scientific data visualization

17. VM/CMS vs. UNICOS

18. MVS/TSO vs. UNICOS

19. Setting your X Window environment

20. Additional documentation: This is an appendix which lists a number
of references for all the material covered in this manual. It lists ad-
ditional documentation for the Cray developed by the vendor, general
documentation on the UNIX operating system, additional documenta-
tion for the libraries available and briefly described in Chapter 8 of the
manual, and references for information on the X Window System.

The information available in this manual, both site specific but also general
documentation, was enough for a new user to get him started working on the
Cray machine.

The situation was not as good with the Convex machine. The only in-
formation at the time for the Convex machine were the vendor supplied
manuals which could only be obtained from the vendor. On the other hand
since ConvexOS is based on BSD UNIX it made it very easy to use gen-
eral documentation available to get oriented with the machine. Of course
site specific information such as the software available, the location of the
software within the file system tree, and getting access to the system were
unavailable and had to be obtained by asking people or looking around the
system. This problem has now been solved by placing the information miss-
ing along with lots of other useful information on-line and accessible through
the gopher server or any world-wide-web (WWW) server. The information
available now through the gopher server will be described in more detail a
little bit later.

Most of our work focused on the Unitree Central File Manager (UCFM) so
we were more concerned about finding plenty of information on the Unitree.

4

UCFM is an application that runs on the Convex machine and manages
the storage and flow of large numbers of files through a hierarchical storage
system, consisting of various types of storage media. The most useful guide
to getting started with the Unitree was the “Unitree User Guide, Convex
Computer Corporation”. It contains the following chapters:

1. Getting started: Describes the basics of what the Unitree does and
explains a lot of the terms, such as migration, purging, and staging,
that are needed to understand the rest of the manual.

2. FTP: Describes how to use the ftp command to store and retrieve files
from the Unitree, as well as common errors and Unitree extensions to
the standard ftp command set.

3. NFS: Describes the Network File System access path to Unitree files.
Unfortunately because of performance problems this option is not avail-
able at this site.

4. Special Features: Describes the trash cans feature of Unitree which is
also not available a t this site.

This was an excellent guide in getting us quickly acquainted with the UCFM
and its basic features. At the time there was also a lack of information about
local features and problems with the Unitree as well as instructions on how
to obtain an account and how to access the Unitree. This problem has also
been relieved now by the development of the gopher site.

Another problem with the documentation available which has still not
been solved is the lack of documentation on more technical information re-
garding the Unitree. Especially for people working on the performance anal-
ysis of a system, the existence of detailed documentation of the functionality
of the system along with information on local site enhancements speeds up
the process of producing results enormousiy. Examples of information that
is missing are:

1. Internals information of the UCFM such as the operation of the various
servers which int,eract during the system’s operation, the data struc-
tures used io iiiipierrieiit the UCFXI, aid the dgorithx~s used withir: the

processes. The only guide available was a set of slides “Unitree Cen-
tral File Manager: UCFM Internals Training Manual’’ , from a training
course offered by Convex. Since these were merely slides a lot of the
information had to be extracted with care and doubt.

2. Information of the format used by UCFM to store files within the var-
ious storage media such as disks and tapes. Some of this information
was extracted from the Internals slides mentioned in the previous slide.

3. Information and diagrams of the topology and connectivity of the stor-
age devices at this local site. This information is extremely important
to a performance analyst and must well described and kept up to date
by the system’s administrators or system’s engineers. The information
was obtained after a long process of digging the information from the
system administrators.

Since this internal and local information described above is still missing but
since it had to be collected by us during the performance study of the mass
storage system it has been included as an appendix in this report. The
information collected in this appendix must be used with care since this is a
heavily used system and its configuration changes very frequently. I t can be
used as a starting point, on the other hand, by someone willing to extend it
into a document describing the system in the necessary detail.

The information available at this time has been greatly enhanced by the
use of the gopher server at sdcd.gsfc.nasa.gov or the WWW server at go-
pher://nccsinfo.gsfc.nasa.gov/NCCS. Most of the information needed to get
a new user started is available through the menus of gopher. Also, refer-
ences to additional documentation can be obtained using the gopher server.
The main screen shown in figure 1 gives the availabe options when starting.
Selecting menu entry number five from the menu gives the Online Docu-
mentation menu shown in figure 2. This is the central menu for all on-line
documentation. Option two gives the phone number for finding out NCCS
system status information. Option three describes the procedure for access-
ing the available systems at NCCS including both the Cray and the Convex
machines. Option four, shown in figure 3, gives information about using
the Cray syst,em such as an excellent overview of the hardware and local

.

6

Root gopher suver: sdcd.gsfc.nasa.gov

-->I I. Current Nccs Status Infornation.
2. NCCStiessageOfTheIky.
3. kat 's Ned -
4. Nccs Neut k t i c l e s d M e Logs/
5. Online Docmentation for Using NCCS S y s t d
6 , Policies and charges/
7. NCCS Organizational In fmat iod
8. NCCS Newsgroup, NCCS homjnous FTP, wd Other Information Sources/
9, Getting Help, User Guide, ad Ibnuald
10. Hou to use th5 m copha.
11. -suwlay o f useful user sLpport Contact Ibnbers.
12. KEYMXi SEARCH (WIIS) of this NCCS Gopher <?>

Page: 111

Figure 1: Gopher Main Menu

configuration, transferring and storing files, and references to additional doc-
umentation. Option five, shown in figure 4, has similar information to option
four but for the Convex machine. Also, it includes a lot of information on
using the Unitree at this specific site, information on commonly seen error
messages, and additional Unitree documentation references. Finally, option
six, shown in figure 5 describes some of the local software developed at NCCS
for use by the users.

7

Online Documentatiw for Using NCCS Systems

--a 1. NCCS Regularly Scheduled Domtimes.
2. Hccs %tea Status Phone: (301) 286-1392.
3. kcessing NCCS Unix Systems/
4. NCCS Crag I n f o n o a t i d
5. NCCS b i i r e e Infomation/
6. KCSSoftuarel
7, k s s i n g the NCCS IBM 9021 WTSO Systerd
8. NCCS HVS I n f o n r a t i d
9. NCCS V i s w l i z a t i d
10, NCCS Exanples and Salnple Codes/

Page: Ul

Figure 2: Online Documentation Menu

NCCS Gay Infomation

-->I 1. Overviw of the Cray C98 and the WIDIS Operating System/
2. Gay Policies/
3, Gay File Storage Infornation/
4. Gay Fi le Transfer I n f o m a t i d
5. Gay Progaming Information/
6, Running Nps Batch Jobs on the b a y /
7, Gay Softuarel
8. Using the IBM WSD System with the Gay/

Page: 1/1

Figure 3: Cray Information Menu

8

NCCS UniTree Infornation

-->I 1. Overview of the NCCS LhiTree Mass Storage System.
2. Hw to k s s UniTree.
3. b i n g Pstitioned Datants f m IBH HSH to UniTree.
4. List of hcoverable UniTree Files .
5, Point-to-Point HiPPI CMlection Betuetn chamey and Dirac.
6, Diffenms Retueen UniTne 1.7.5 and UniTne 1.5.
7, Unilree 1.7.6 h n t l y Known Problems.
8, UniTree Doanentation.
9. Hw to chedc for UliTree Fkrailability.
10. Utilities to List, Remove, Locate b Alter Petmissions of Files.
11. Reamendatims for Effective LhiTree Use.
12. Uni1re-e Files That b y be Cwrrpted Due to Buffer Problems.
13. Canpted UniTree Files Dn to Tapes Accidentally Relabeled.
14. Snre UniTree I/O errort &e to Missing Data Blocks.
15. Problcn uith sow UliTree Tapes Containing Extra Tape Marks.
16. UniTree Carand Fwceprge bailsble.
17, Old hiTm 1.5 Infornatid

at+ess for IMP, to bit, to go up a a m Page: l/l

Figure 4: Unitree Information Menu

-->I 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Hots Softuse

TapeInprt bailable on KCS Platforns.
Softwre fivailable on the Ncfs Gay.
Organization of Softuare in the NCCS Gay Directories.
Ovuviw of Nccs bthenatical Libraries.
3rd Party Gay Utilities d bt b t i c a l Libraries/
Gay Scientific Libraries/
NCCS Local Utilities Installed on Unix System.
Using X Uindws on Nccs System.
"S Tape Export Utility: tapex.
Mvs Softuare Utilities and Libraries/
Old Software/

Page: 111

Figure 5: Software Information Menu

9

2 Introduction
Mass storage systems are used in research environments for storing data
generated by scientific simulations and satelite observations in amounts on
the order of terabytes. The cost of storage devices of that capacity is still
very high while the rate of increase in disk space requirements by the users
grows continuously. This problem is especially evident in scientific research
centers where enormous amounts of data are generated on a daily basis which
must be archived so that they can be analyzed at a later time [3, 61.

In this study the actual system under consideration is the Unitree Mass
Storage System (UMSS) used at NASA’s Center for Computational Sciences
(NCCS). The original intent of this research project was to improve the per-
formance of file transfer operations by developing a scheduler which would
dynamically transfer the files a user would need for executing a computa-
tional intensive simulation at the Gray system from the Unitree mass storage
system. After careful1 analysis of this system we determined that the sched-
uler would not be a possibility since the users decide which files to use and
retrieve them on their own. The idea of a dynamic scheduler would be useful
in an environment where the requests for data files are indirect through NFS
access to files. Due to performance and security reasons the NFS option of
Unitree has not been activated or utilized at this site. In finding an alter-
native method of enhancing the performance of file access we noticed that
the system administrators are experiencing a situation where they constantly
need to purchase additional storage devices which are filled to capacity in a
decreasing amount of time. The main resource whose utilization must be op-
timized in this case is storage capacity. Removing the redundancy in the data
stored in the file system, by inserting an online compression/decompression
module, is one method of increasing the effective capacity of the system
without the addition of expensive hardware devices. One concern in adding
online compression to a storage system is the increased load on the system
since compression is a CPU intensive operation. Another concern is that if
there are multiple access points to the file system significant modification
must be made to the operating system to insert the compression algorithm
at every write access point and the decompression algorithm at every read
access point.

Since the Uh4SS provides access to the file system only through the ftp

10

clients, we inserted the data compression module within the ftp client thus
dealing with both concerns mentioned in the previous paragraph. First of
all, placing compression/decompression within the ftp client simplifies the
installation since only the ftp clients at each workstation have to be replaced
and no modifications on the UMSS software are needed. Also, since the ftp
clients are distributed on each remote host of the system the additional load of
compressing and decompressing files is not placed on the central mass storage
system. Further, the insertion of the compression module is transparent to
the user since it does not require any changes to the user interface.

The next concern was selecting a compression algorithm to use out of the
multitudes that exist. The restrictions that the application places on the
compression algorithm to be selected are: a) the algorithm must be online
since a two-phase compression algorithm would be too slow, b) it must be
able to compress at high data rates and c) it must be able to attain the highest
possible compression ratio on a variety of data formats. The Ziv-Lempel and
LZW algorithms were chosen for evaluation since they both satisfy the above
three requirements [16, 4, 151.

In this study we examine the performance of the two online algorithms
using both a sequential and a pipelined implementation of the client. The
performance is compared based on the execution time of each of the algo-
rithms and the compression ratio attained on various data formats. Two sets
of files were used to test the algorithms. The first set is the Calgary Text
Compression Corpus, which is a widely used benchmark for comparing com-
pression algorithms and the second is a representative collection of files from
the specific mass storage system under consideration [l]. We also examine
the effect of compression on the disk cache of the mass storage system. A
simulation is used to determine the effect of compressing data on the hit-ratio
of the disk cache, the number of migrations of files from the disk cache to
robotic storage, and the total number of bytes migrating to robotic storage.
We also look at two different migration algorithms and their effect on the hit
ratio and the file migrations.

Section 2 gives a brief background on data compression related termi-
nology and a brief description of the two compression algorithms evaluated
in this paper. Section 3 describes the implementations of the compression
algorithms used in the evaluation as well as the method used to embed the

11

compression algorithm within the ftp client source code. Section 4 first de-
scribes the two distinct set of files used for evaluation of the various ftp clients
developed. Then it discusses the tests performed for evaluating the perfor-
mance of the various compression algorithms on the sample files. Section
three describes the simulation used in this study. Section four describes the
simulations performed and analyzes the results. Section five concludes the
paper and discusses future work.

3 System Overview
The UMSS is a hierarchical mass storage management system which runs as
a centralized application program on top of the Unix operating system and
manages a hierarchical mass storage file system. The specific installation
offers three levels in the storage hierarchy. Figure 6 shows the typical storage
pyramid provided by most hierarchical mass storage systems. At the higher
level it provides a disk array, with a total capacity of 150 GBs, which serves
mainly as a cache for the lower levels. The second level has a capacity of
4.8 terabytes provided by four nearline robotic tape storage units. The third
level is the offline storage vault which has the slowest transfer rate serving as
the long-term repository. Users access files stored in the UMSS using the ftp
protocol from their local workstations via a local area network. In addition
to the ftp protocol, UMSS also provides an NFS interface to the file system
but due to performance and security reasons the NFS protocol is not used by
many installations including the one at NCCS. The UMSS was designed in a
modular fashion in order to make possible its distribution over multiple host
machines. Figure 7 shows a block diagram of the UMSS components [12].

Each of the components shown in figure 7 is represented by one or more in-
dependent daemon processes and is responsible for certain tasks. The ‘(Name
Server” resolves string file names used by the users, into unique integer iden-
tifiers, used internally by all the other components of the UMSS. The (‘Disk
Server” keeps track of the files stored in the disk cache, providing the view
of a Unix file system to the user. The “Disk Mover” is responsible for all
transfers to and from the disk cache. The “Migration Server” controls the
migration of files from the disk cache to lower levels in the disk hierarchy
to ensure that the disk cache always has sufficient free space to operate effi-

12

ciently. The “Tape Server” keeps track of the files stored in the tape storage
units whether online or offline. The “Tape Mover” performs all file transfers
to and from a tape device. The physical device manager is responsible for
managing the tape mounts, scheduling them in an order which maximizes the
utilization of the system resources. Finally, the “Physical Volume Reposi-
tory” is responsible for mounting and dismounting both automated online
and offline storage physical volumes [14]. Any files retrieved from the UMSS
are first placed in the disk cache, if they are not already there, and then are
transferred to the user. Likewise, any files stored into the UMSS are first
stored in the disk cache and then they are moved to a lower level of the
hierarchy through migration.

4 Data Compression Concepts
In this section we define some terms which will be used in the description
of the compression algorithms that follows. An alphabet is a finite set of
symbols. A message is a finite sequence of symbols chosen from the alphabet.
In the compression model we assume that there is a source which encodes
symbols from a source alphabet. A code is a representation of messages from
the source alphabet into codewords from the code alphabet.

Data compression is a coding method which reduces the redundancy in the
original message during the encoding process. There are four types of codes:
block-block, block-variabl,e, variable-block, and variable-variable. A block is
a message of fixed length from a given alphabet. Thus a block-block code is
the encoding of the source messages into fixed length blocks, each of which
is mapped into a fixed length block from the coding alphabet. Compression
performance is measured using compression ratio which is defined as: rc =
100(Sold - Snew) /Sold where So,, is the size of the file before compression and
Snew is the size of the file after compression. Compression rate is the rate of
coqxession of a file using a part.icular algorithm and is calculated as SQ!d/Tc
where T, is the elapsed time of compressing the file Ill].

Data compression schemes, other than being classified based on the length
of their encodings, are also classified based on whether they perform a static
or a dynamic mapping of source strings into code strings. The encoding of
source messages into codes is done using a dictionary which contains the

13

mapping. A static dictionary method uses a given dictionary throughout
the encoding and decoding process. A static dictionary method is most
often used with offline algorithms since the source messages are all given
and the optimal static dictionary can be constructed before encoding starts.
The dynamic dictionary or sliding dictionary method is used with online
compression algorithms. The dictionary changes continuously throughout
the encoding process since new strings which appear in the source messages
are added while strings which have not been used recently are deleted. The
main advantage of the dynamic method is that it adapts very well to changes
in the temporal locality of the file being compressed [l].

The two online compression algorithms used are the Ziv-Lempel and the
LZW algorithms [16, 4, 151. Both algorithms are textual substitution based,
dynamic dictionary compression algorithms. In both cases the messages from
the input source are parsed into successive substrings, consisting of two parts:
the citation, which is the longest prefix string that is in the dictionary, and
the innovation, which is the symbol immediately following the citation. The
two algorithms vary in the way they handle the innovation. In the Ziv-Lempel
algorithm, each parsed substring is replaced by a pointer to the codeword in
the dictionary matching the citation, and the innovation. Then the string
formed by concatenating the citation and the innovation is added to the table
as a new codeword. The same process is repeated until the end of the source
messages by starting with the character following the current innovation.

The LZW algorithm is almost identical. There are two main differences
between the two algorithms. First, after the LZW algorithm has selected the
citation and the innovation of the current string, i t stores them in the dictio-
nary and then repeats the process starting from the innovation itself rather
than from the character following the innovation as in the Ziv-Lempel algo-
rithm. Also, strings are stored in the dictionary associatively using a hashing
method rather than using a code index as in the Ziv-Lempel algorithm [15].

During decompression both algorithms reconstruct the dynamic table
based on the compressed messages. The citation part of the code is looked-up
in the dictionary and the corresponding string followed by the innovation are
passed to the output. The string itself is then added to the dictionary and
the process continues. The decompression algorithm for LZW compression
is more complicated. By storing the codes in the dictionary during com-

14

pression associatively the decompression process becomes a recursive one. A
more detailed discussion of the Ziv-Lempel algorithm can be found in [16]
and of the LZW algorithm in [15].

5 Implementation
In order to reduce development time existing source codde was used. For
an implementation of the Ziv-Lempel algorithm we used the source code of
the GNU Unix utility gz ip and for the LZW algorithm we used the source
code of the compress utility. Both implementations deviate from the stan-
dard algorithms by including various enhancements in order to improve the
performance of the utilities [5, 21.

The g z i p utility uses a modification of the Ziv-Lempel algorithm. As
described above a second occurrence of a string is replaced by a distance
length to its previous occurrence and the length of the string. Distances
within the file are limited to 32K bytes and lengths of strings are limited
to 258 bytes. In order to improve the compression rate the algorithm also
maintains two Huffman trees; in one it stores match distances and in the
other literals and match lengths.

One runtime parameter of gz ip controls the trade-off between optimizing
the algorithm for speed over compression ratio. The parameter is an integer
ranging from 1 to 9 where 1 attains the fastest compression for a given file
and a 9 attains the highest compression ratio. The strings are stored in
the dictionary using singly linked hash chains. The parameter determines
at what length to truncate the hash chains as well as how to perform the
matching of the strings and when to insert new strings in the dictionary [2].

The compress utility implements the LZW algorithm with various heuris-
tics. Initially it starts encoding new strings using 9-bit codes and entering
t h e n in thc dictionary. Once it runs out of 9-bit codes i t increases the code
size to 10-bits and continues. It repeats this process up to a maximum code
size, default 16, which can be set by a runtime parameter. Another mod-
ification of the LZW algorithm is that it adapts to changing blocks in the
code. Once the upper limit on code bits has been reached, it periodically
checks the compression ratio t u iiiake sure it keeps iiicreasing. If the ratio

I

15

starts decreasing it clears the dictionary and starts from the beginning [5].

Both algorithms were inserted into the ftp client using both a sequential
and a pipelined implementation. The sequential implementation, as shown
in figure 8, when the put command is executed, passes the local fiIe through
the compression algorithm and upon completion i t transmits the compressed
output to the remote host. The pipelined implementation creates another
process which compresses the file. The reason for implementing the com-
pression in a pipeline is to improve the performance of the overall compres-
sion/transmission process. After a buffer of data has been compressed it is
send out by the parent process while the child process starts compressing the
next block of data. Figure 9 shows how the pipeline operates. Each time
unit represents the time when a buffer of data has been compressed and it is
send through the pipe to be transmitted.

The parent and child processes exchange data using the Unix pipe mech-
anism. When the ftp send command is executed, a child process is created
which reads data from the file to be transmitted, compresses it and writes
i t to the write end of the pipe. The parent process which executes the
sendrequest() routine in the ftp code, reads the data from the read end of
the pipe and writes i t out to the socket descriptor. Figure 10 shows the
interaction of the child and parent processes using the pipe mechanism.

During decompression the data stream enters from the socket connection.
The child process reads it and uncompresses it a buffer-full at a time, sending
the output to the write end of the pipe. At the same time, the parent process
reads the stream from the read end of the pipe and writes it into the local file
as shown in figure 11. Table 1 summarizes the clients implemented. From
this point the names of the clients shown in the table will be used in this
report to describe the particular implementation under consideration.

6 Results
The four clients discussed in the previous section were tested using two sets
of files. The first set of files is the Calgary Text Compression Corpus which
is widely used for evaluating the performance of compression algorithms.
Nine different types of text are represented in the corpus with certain types

16

Client Name Compression
ftwcs compress

Figure 6: Hierarchical Storage Pyramid

Implementation
sequential

Table 1: Table of Ftp Client Implementations

ftpgsl gzip -1 sequential
ftpgs6 gzip -6 sequential
ftpgs9 gzip -9 sequential

., ftPgP6 gzip -6 pipelined
ftPgP9 gzip -9 pipelined

I-ftpcp I compress I pipelined II

17

f 3 f 3 f 3 f
Vault Repack

Server
Server

Name Migration Migration
Server Server

\

f

Disk Tape
Server + Server

0’ n

Figure 7: UMSS Block Diagram

.

compress0

18

I I I
I I I

-L---C. -L). c I * :

Output Stream to Compression sendreques t()
routine Network Interface

Strea

Figure 8: Sequential Implementation

c c
I Socket Descriptor I

Figure 9: The Data Compression/Data Transfer P ipe l ine

having more than one representative file. Normal English text is represented
using two books and six technical papers (bookl, book2, paperl-paper6).
A bibliography file (bib) and a few news articles (news) represent unusual
English writing. Computer programming languages are represented by three
files (progc, progl, progp). Non-ASCII files included are two executable code
files (objl, obj2), some geophysical data (geo) and a bitmap black and white
picture (pic). A terminal session is also included (trans) [l].

The second set includes files selected from the UMSS to represent both
the typical file data and file sizes found in the specific system under consid-
eration. The files were selected as representatives from each of the research
groups making use of the mass storage system. The first three files were
selected from the geodynamics group (filel, file2, file3), the next two come
from the Climate-Ocean-Land-Atmospheres group (file4, file5), the next two
are gridded data files from the Climate Data Assimilation group (file(?, file7)
and the last one is an IEEE binary level 3 data file from the Climate Satelite

19

>. compress() sendreques t() read
from file

Child Process

,write
to socket

Figure 10: Process Interaction During Compression

Parent Process Child Process

Figure 11: Process Interaction During Decompression

20

retrieval group (file8). This second set of files will be referred to from now
on as the NASA Center for Computational Sciences (NCCS) files [7]. Since
these files are very large and hard to process given the resources allocated to
the authors they were only used for testing the compression algorithms. The
transfer rate of the NCCS data files can be interpolated from the results of
the files in the first set.

The first thing we looked at is how long the existing system takes to
transfer the sample files from the UMSS using a plain ftp client without any
compression. Table 2 shows the transfer rate and transfer time for all the
sample files in the first set. This will be used as a reference point for evaluat-
ing the cost of inserting compression within the ftp client. The mean transfer
rate is 30.89 Kb/sec and the weighted mean, based on the file sizes, is 30.61
Kb/sec. Of course this rate is dependent on the location of the specific host
making the requests relative to the UMSS main server. To maintain consis-
tency in the measurements, the same host was used for all measurements of
transfer time and the tests were averaged over many transmission requests
performed at approximately the same time of the day. Later in this section
we derive two inequalities which can be used to estimate the effect of transfer
time in using an online compression algorithm.

Next we evaluated the compression ratios that can be attained using
the two different algorithms. The speed parameter of the gzip utility was
utilized. In section 5 we described how the speed parameter is used to vary
the compression algorithm of the gzip utility so that it can be optimized
for higher compression ratios or higher compression rates. The value varies
between 1, which attains the fastest compression rate, to 9 which attains
the highest compression ratio. We tested compression using the values 1, 6
and 9. The compression algorithm will be labeled in the tables as gzip-1,
gzip-6 and gzip-9 respectively. Table 3 and 4 show the compression ratios
attained for each of the files in the Calgary Text Compression Corpus and
the NCCS files respectively. Table 5 shows the mean compression ratio and
the weighted mean attained over all files.

We then looked at the compression time of each of the algorithms. Ta-
bles 6 show the compression rates for each of the files in set l. There are
ten columns in the table. The first column lists the filename and the second
column the corresponding file size. Then there are four pairs of columns

, -

I

21

Table 2: Ftp Transmission of the Calgary Text Compression Corpus

Filename

bib
book1
book2
geo
news
obj 1
obj2
paper1
paper2
paper3
paper4
paper5
paper6
pic
progc

ProgP
trans

Prod

File Size
in bytes
111261
768771
610856
102400
377109
21504

246814
53161
82199
46526
13286
11954
38105

513216
39611
71646
49379
93695

Transfer Rate
in Kb/sec

45.93
26.24
39.50
28.62
40.07
13.67
25.40
8.32

50.58
48.54
31.06
37.38
46.88
19.02
22.73
12.46
25.76
33.94

Transfer Time
in secs

2.42
29.30
15.50
3.58
9.41
1.57
9.72
6.39
1.63
0.96
0.43
0.32
0.81

27.00
1.74
5.75
1.92
2.76

.

22

Table 3: Compression Ratios of the Calgary Text Compression Cor-
PUS

Filename

bib
book1
book2
geo
news
objl
obj2
paper1
paper2
paper3
paper4
paper5
paper6
pic
Progc

ProgP
trans

prog]

File Size
in bytes
111261
768771
610856
102400
377109
21504

246814
53161
82199
46526
13286
11954
38 105

513216
39611
71 646
49379
93695

Compress
%

58.18
56.81
58.95
24.04
51.70
34.67
47.87
52.82
56.00
52.36
47.63
44.95
50.93
87.88
51.67
62.10
61.09
59.18

gzip-1
%

66.2
57.2
64.3
32.7
60.4
51.7
65.2
63.8
62.1
59.7
57.7
57.8
64.0
88.6
65.2
76.0
76.2
78.2

gzip-6
%

68.5
59.2
66.1
33.1
61.5
52.1
66.9
65.1
63.8
61.1
58.5
58.4
65.3
89.0
66.5
77.3
77.2
79.7

gzip-9
%

68.6
59.3
66.2
33.2
61.7
52.1
67.1
65.1
63.9
61.2
58.5
58.4
65.3
89.7
66.5
77.4
77.3
79.8

Table 4: Compression Ratios of the NCCS files

file3
file4
file5
file6
file7

11 file8

1360808 63.3
193393920 11.9 ' 15612480 53.14
119150208 0.0
19699208 0.0

199636080 0.0

33.1

21.0 I 21.5

gzip-9
%

11.5
7.3

69.5
33.2
62.5
27.3
21.8
21.5

23

compress gzip-1 gzip-6
Arithmetic Mean Set 1 53.3 63.7 65.0
Weighted Mean Set 1 59.6 65.7 67.2
Arithmetic Mean Set 2 16.0 30.8 31.6
Weighted Mean Set 2 5.7 26.9 27.6

gzip-9
65.1
67.4
31.8
27.6

for each of the compression algorithms tested. In each pair the first column
is the compression time and in the second column the decompression time
respectively. It is apparent by looking at these tables that compression is
a much more time consuming operation than decompression. This implies
that the decompression rates are much higher which means that once the files
are stored in the mass storage system retrieval for processing is much faster.
In a mass storage system where the number of read operations exceeds the
number of write operations would definitely profit by an online compression
algorithm on the clients.

Another observation we made by comparing the compression rates with
their corresponding compression ratios was that using a value of 9 as a speed
option with gzip will cause a small increase in compression ratio at the ex-
pense of a considerably large decrease in compression rate. Using this par-
ticular version of the compression would be suitable only for sites where
increasing the effective capacity of the mass storage system is the primary
concern.

The next step was to evaluate the performance of the ftp clients devel-
oped. Tables 7 and 8 list the time spent compressing and the time spent
actually transferring the compressed file for the Calgary Text Compression
Corpus and the NCCS files respectively for each of the four sequential clients
described in the previous section. Tables 9 and 10 list the same results
for the four pipelined clients. Since the time to compress the files overlaps
with the time to transfer the file, only one time measurement is shown in
these tables which is the elapsed time. The last column also lists the time
it takes for transmitting the file without any compression for comparison.
The pipelined implementation obviously provides the advantage of concur-
rently compressing and transmitting thus providing very good overall per-

a

24

Table 6: Compression Times for the Calgary Text Compression Cor-
PUS

FiIename

bib
book1
book2
geo
news
objl
obj2
paper1
paper2
paper3
paper4
paper5
paper6
pic
P r o s

ProgP
trans

P W l

File Size
bytes

111261
768771
610856
102400
377109
21504

246814
53161
82199
46526
13286
11 954
38105

513216
3961 1
71646
49379
93695

compr .
secs
0.2
3.5
2.4
0.3
1.3
0.1
1.0
0.2
0.2
0.2
0.1
0.1
0.2
0.5
0.1
0.2
0.2
0.2

uncompr .
secs
0.1
1.2
1.2
0.1
0.6
0.1
0.3
0.1
0.1
0.1
0.1
0.1
0.1
0.3
0.1
0.1
0.1
0.1

gzip-1
secs
0.4
6.2
4.0
1.4
2.2
0.1
1.9
0.2
0.2
0.1
0.1
0.1
0.1
1.2
0.1
0.2
0.1
0.2

gunzip
secs
0.1
1 .o
0.5
0.1
0.3
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1

gzip-6
secs
0.6

13.4
8.0
3.0
3.9
0.1
3.1
0.2
0.5
0.2
0.1
0.1
0.2
2.6
0.2
0.3
0.2
0.3

gunzip
secs
0.1
0.6
0.5
0.1
0.2
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1

gzip-9
secs
1.2

17.5
10.0
5.3
5.3
0.2
5.5
0.3
0.6
0.3
0.1
0.2
0.2

32.0
0.2
0.6
0.4
0.4

gunzip
secs 1
0.4 j

0.1 ~

0.1 '

0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1

0.1 j

25

formance. I t appears that the most appropriate compression scheme would
be the pipelined implementation of the gzip-1 algorithm. It seems to attain
very good compression ratio overall while at the same time compressing at
very high compression rates.

Table 7: Compression/Transmission Times for Sequential Ftp
Clients-Set 1

Filename

bib
book1
book2
geo
news
objl
obj2
paper1
paper2
paper3
paper4
paper5
paper6
pic
progc

P%P
trans

progl

ftl

Comp.
0.42
3.99
3.11
0.46
2.10
0.08
1.40
0.19
0.28

0.160
0.05
0.04
0.17
0.96
0.13
0.22
0.15
0.35

S

Trans.
1.25

12.20
17.70
12.50
10.40
0.62
3.09
0.83
2.31
0.80
0.19
0.20
1.54
4.05
0.64
0.76
0.50
3.06

f t D
Comp.

0.56
5.64
3.81
1.08
3.18
0.14
1.49
0.29
0.51
0.64
0.12
0.08
0.21
1.88
0.21
0.36
0.21
0.42

;1
E

1.56
20.40
13.20
6.64

15.60
0.83

10.40
3.25
2.03
1.18
0.62
0.47
2.31
9.01
0.52
0.76
1.39
1.11

f t D ;6
Comp.

1.50
15.80
9.94
4.01
5.30
0.21
3.64
0.62
1.24
0.74
0.12
0.10
0.41
4.00
0.42
0.76
0.42
0.74

Trans.
2.24

13.30
11.70
4.62
6.97
0.50
4.54
0.63
0.90
2.13
0.11
0.05
1.29
3.51
0.28
1.49
0.36
0.70

ftll ;9
Comp.

2.13
20.50
12.20
7.44
6.36
0.45
8.07
0.90
2.19
0.75
0.12
0.10
0.64

31.00
0.64
2.45
1.28
1.17

isiz
0.79

15.10
7.44
1.87
3.79
0.33
1.80
0.81
0.80
1.27
0.16
0.24
1.02
3.54
0.28
0.64
0.47
0.57

Even though our main goal is to increase the effective capacity of the
storage system.it is also very important to examine the tradeoff in execu-
tion time versus increased effective capacity of the mass storage system of
inserting compression at the ftp client. In other words we want to compare
the amount of time taken to compress the file and send i t against the cur-
rent situation of simply transferring t.he uncompressed file. I t is obvious that
compression will add a factor to the cost but will the decrease in size be

26

Table 8: Compression/Transmission Times for Sequential Ftp
Clients-Set 2

ftr s6
Trans.

1.10

Filename I ftl ft1 s9
Comp.

1.18 file1
file2
file3
file4
file5
file6
file7
file8

359.00
130.00

5263.00

1789.00
279.00

i 4870.00

1 464.00

210.00

1550.00
112.00

1070.00
136.00

1710.00

:S
Trans.

0.20
138.00

1.66
1682.00

79.90
1113.00

68.50
1727.00

ft1 s l
Comp.

0.78
202.00

9.80
1850.00
151.00

1380.00
186.00

2180.00

Trans.
0.08

144.00
1.23

1530.00
71.10

1058.00
32.40

1525.00

Comp.
1.31

327.00
52.00

2170.00
333.00

1460.00
212.00

2578.00

87.10
2.66

1489.00
56.80

988.00
43.60

1437.00

Table 9: Transmission Times for Pipel ined Ftp Clients-Set 1

Filename
bib
book1
book2
geo
news
objl
obj2
paper1
paper2
paper3
paper4
paper5
paper6
pic
progc

ProgP
trans

Pr%l

ftPCP
1.50

12.80
13.2
8.14

12.60
0.39
6.86
0.50
2.38
4.06
0.24
0.13
0.61
2.08
0.51
0.93
0.55
1.13

ftPgP1
2.75

17.50
10.40
3.29
6.05
0.29
2.90
0.72
2.16
0.70
0.12
0.21
3.66
2.98
0.59
0.71
0.49
0.94

ftPgP6
3.09

28.10
21.70
5.13

12.50
0.50
6.73
2.98
2.95
1.12
0.18
0.11
0.60
5.67
0.69
1.26
0.73
1.45

ftPgP9
2.40

28.00
24.00
2.80

15.00
0.07
7.40
1.20
1.00
0.13
0.04
0.04
0.16

31.00
0.13
2.40
1.20
i.50

ftP
2.42

29.30
15.50
3.58
9.41
1.57
9.72
6.39
1.63
0.96
0.43
0.32
0.81

27.00
1.74
5.75
1.92
n -r. z . 10

Tkans.
0.10

96.80
14.10

1463.00
53.20

969.00
30.10

1415.00

27

Filename
file1

Table 10: Transmission Times for Pipelined Ftp Clients-Set 2

ftpcp
0.29

ftPgP1
1.49

283.00
10.60

1910.00
2320.00

184.00
1490.00
161.00

file2
file3
file4
file5
file6
file7
file8

ftPgP6
1.11

428.00
86.00

2360.00
2710.00
238.00

1760.00
319.00

254.00
11.20

1420.00
2250.00

132.00
1010.00

I 141.00

ftPgP9
0.73

476.00
141.00

6620.00
5160.00
262.00

1920.00
470.00

ftP
1.35

251.00
15.60

1430.00
2160.00

132.90
980.00
159.00

sufficient to gain this factor back from the file transmission ? The following
inequality describes the desired relation between simply transferring the file
and compressing the file before transmission.

s S(l - T,) > -+
1 1-r, > -+-

S
Rt RC Rt
1

Rt Rc Rt

-

-

where S is the size of the file, Rt is the file transfer rate, R, is the com-
pression rate and r, is the compression ratio normalized to the range [0,1].
The intuitive meaning of this relation is that the effective compression rate
of the compression algorithm must be greater than the transfer rate of the
network. If this inequality doesn’t hold the online compression algorithm
increases the effective capacity of the system at the expense of added time
when storing the file. The above inequality applies only to the sequential
implementation. Assuming that the communication time between the par-
ent and child processes is negligible we can derive a similar relation for the
pipelined implementation as shown in inequality 2.

S s S(1- T ,)) - > max{-,
Rt Rc Rt

The total time of the pipeline is bounded by the maximum of each of
it.s components. Which of the tn-o components prevails will depend on the

I

28

particular client making the request and on the network topology. If the
client is connected locally relative to the server but is a slow machine then
the compression component will prevail whereas on a fast machine which is
a few hops from the server the transmission component will prevail.

In addition to increasing the effective capacity of the mass storage system,
placing compression on the client side has certain additional advantages.
Since the files are compressed before being send to the server less traffic
on the network is generated which should also increase the transfer rates.
This result is apparent when looking at the faster transmission times for
the sample files when comparing tables 2 and 7. Another more important
advantage is the increase of the effective capacity of the disk cache. Since
files are first placed on the cache when they are send to the mass storage
system reducing the size of the files is the same as increasing the size of the
disk cache. When the disk cache fills up a migration algorithm is used to
move files to tertiary storage. Since the migration algorithm used on the
UMSS is an LRU variant, the stack property of the LRU algorithm implies
that increasing the capacity will definitely increase the hit ratio of the disk
cache [lo].

A trace-driven simulation of the disk cache was used to ascertain the effect
on the hit ratio and the number of files migrated caused by file compression.
The simulation used an LRU algorithm and a high-water mark for starting
migration from the disk cache to tertiary storage. The size of the disk cache
used was 150GB which is the actual disk cache size at the NCCS. The traces
used for running the simulation were the actual ftp logs from the UMSS site.
Since it would be impractical to collect the compression ratios for each of the
files in the mass storage system each simulation run used a fixed compression
ratio and the simulation was run for various compression ratios ranging from
0% to 70% compression. Each simulation was run using the logs from a
twenty day period to remove transient effects. Then measurements were
collected using the logs for the following fifteen day period. Table 11 shows a
significant increase in the number of hits as the compression ratio increases.

29

7 Disk Cache Simulation
A trace-driven simulation of the disk cache was used to ascertain the effect
on the hit ratio and on the migration of files caused by file compression and
migration algorithm. A discrete event simulator was developed using the
ftp request traces to drive the simulation. The disk cache size was varied
from 150GB, which is the actual disk cache size at the NCCS site, to 250GB.
Initially the cache was assumed to be empty. The disk cache was represented
by a doubly linked list of structures which described each file entry. The
information stored for each file were a unique file identifier, the file size,
a timestamp of the time the file entered the disk cache, and an indicator
of whether the file is stored in the disk cache or in the lower levels of the
hierarchy.

Put requests were placed in the disk cache. If the file already resided
in the cache or lower in the hierarchy the operation was processed as an
update, ensuring that only one copy of the file existed in the entire mass
storage system. For get requests, if the file existed in the disk cache then the
request was considered a hit. If the file existed lower in the hierarchy i t was
staged in the disk cache. If the file requested did not exist in the hierarchy,
i t was processed as if it was in the lower levels of the hierarchy and a new
entry was created for the file in the disk cache.

Migration in simulated time was performed using a high water mark as
in the UCFM. If the amount of free space in the cache went below the high
water mark of 75% the total disk cache capacity, files were migrated to the
lower levels of the hierarchy to create more space. Two different migration
algorithms were tested. The first one, was LRU based, selecting files to
migrate which had resided in the cache the longest without being referenced.
The second algorithm was based on the file size, migrating larger files first.

Since i t would be impractical to collect the compression ratios for each
of the files in the mass storage system each simulation run used a fixed
compression ratio. The simulation was run for various compression ratios
ranging from 0% to 60% compression.

I

30

8 Results
The ftp interactive request logs for a period of three months were used to run
the simulation. The total number of references in that three month period
was approximately 106,000. The references from the first two months were
used for bringing the disk cache to a warm state. Then the number of hits,
the hit ratio, the number of files migrating to tertiary storage, and the total
number of bytes migrated were measured for fixed values of compression ratio.
The simulation was run also for two different migration algorithms. The first
migration algorithm, which selected files to migrate if they had resided on
the disk cache the longest without being referenced, will be referred to as the
LRU bused algorithm. The second algorithm which selected files to migrate
based on their file size will be referred to as the Size bused algorithm. The
hit ratio was computed as the number of hits per day over the number of get
requests on that specific day.

One important observation that was made about the reference patterns
used in this mass storage system was that the requests do not exhibit signifi-
cant temporal locality. Users do not tend to re-use their files very frequently
as in a typical file system. This implies that this specific mass storage system
is used more as an archive than as a typical file system. Since the working
set of the get request stream continuously changes, only low hit ratios are
possible regardless of size increases to the disk cache.

In order to be able to compare the hit ratios measured with some sort of
an optimal hit ratio we run the simulation on the same trace data setting the
compression ratio to a value very close to zero. This allowed all the files to fit
within the disk cache, imitating a disk cache of an enormous size, generating
no migrations. This experiment was used to generate the optimal (OPT) disk
cache hit ratios. The same method was used to compute the hit ratio of this
cache as in the other cases. Table 11 summarizes the effect of compression on
the mmber of hits fer each of the experiments. The table is divided in three
major column groups for each of the migration algorithms. The first column
group shows the results for the LRU based migration algorithm, the second
column group for the Size based migration algorithm, and the last column
shows the results fOr the OPT disk cache. The first two column groups
consist of three duiii i is , O i i e for each of three difheii t C G ~ X ~ E S S ~ G ~ I ratios
attempted. Comparing the results from the two migration algorithms against

31

T,

1
2

Table 11: Number of Cache Hits over Compression Ratio

U

0.0 0.2 0.4 0.0 0.2 0.4 OPT
285 285 286 285 286 286 286
87 87 87 104 104 104 105 -

3
4

..
I

186 186 186 186 186 186 202 '
342 342 342 343 343 343 352

' 5
6

235 241 242 435 435 435 493
1086 1087 1088 1089 1088 1087 1130

+I

7 I 1323 I 1323 I 1323 I 1500 1 1500 I 1500 I 1698 1 I I I I I I I

I I I I I

15 1 1249 I 1249 I 1251 1 1244 I 1243 I 1244 I 1256 1
the results under OPT we see that the number of hits for both algorithms
are very close to the optimal. Compression does not affect the hit ratio very
much and this is because the disk cache is large enough to support the hits
in the reference patterns. It should be noted that the LRU based algorithm
exhibits the inclusion property as expected since the number of hits is non-
decreasing with increases in the disk cache size. On the other hand, the size
based algorithm in certain cases decreases with a larger effective disk cache
size.

The hit ratios were also plotted in figure 12 for various compression ra-
tios. The plot on the top shows the hit ratio variation with respect to the
compression ratio for the size based migration algorithm and the bottom plot
shows the variat.ion for the LRU based migration algorithm. It is apparent
from these figures that size based migration provides higher hit ratios than
the LRU based algorithm. The variation in compression ratio does not have
significant effect on the hit ratio and the reason for this is the same as dis-

Size Based Migration
1.0 I , . . . I , ,

.........

0.8 -

32

,

0 . 0 " " " " ' " " " " ~ ~ ' " ~ " " ' "
0 5 10 15 20 25 30

0 5 10 15 20 25 D

Figure 12: Hit-Ratio versus Compression Ratio

cussed in the previous paragraph. This implies that adding additional disks
to the disk cache will not have any effect on the hit ratio based on the refer-
ences analyzed. Also any further effort in improving the hit ratio by varying
the migration algorithm will not generate any significant improvement on the
hit ratio. The only possible method of increasing the hit ratio would be to
develop a prefetching algorithm that is based on hints provided by the user.

The second part of the simulation analysis focused on the migrations.
Since migration involves the use of tape drives from the robotic silos it is
an expensive operation. Thus, reducing the number of migrations or the
total number of bytes migrating to the tape will improve the mass storage
system's performance. Figure 13 shows the number of files migrating versus
compression ratio for the two migration algorithms. The L8RU based a!go-
rithm maintains a consistent number of migrations and tends to smooth the

33 Size Based Migration
16000.0 I I

LRU Based Migration
16000.0

12000.0

1

Figure 13: Number of Migrations versus Compression Ratio

migration operations over time. I t appears that the effect of file compres-
sion is minimal. Looking at the peaks in the LRU based algorithm it appears
that compression simply shifts the migration effects but does not reduce their
number. The size based migration algorithm decreases significantly the num-
ber of migrations but it has the negative effect of generating on certain days
tremendous migration traffic. Analyzing the file sizes for both get and put
requests we found that the mean file size of files stored in the storage system
is an order of magnitude larger than the mean file size of files retrieved. Since
the size based algorithm removes larger files first, eventually i t runs out of
large files and it has to remove a huge number of small files to free space in
the disk cache.

Figure 14 shows the number of bytes migrating to robotic storage for
various compression ratios. It is apparent that for both migration algorithms

34

4e+07

Size Based Migration
6e+07 I I

.

... El]
2e+07

0' I
0 10 20 30

M U Based Migration
6e+07 I I

4e+07

2e+07

0'
0 10 20 30

Figure 14: Bytes Migrated versus Compression Ratio

the higher compression ratio provides significant reduction in the number of
bytes that need to migrate. The size based migration algorithm provides
better performance throughout the simulation period. The time it takes the
system to process a migration involves an overhead time and a data transfer
time. The overhead time consists of mounting the tape on a tape drive, a seek
time to place the tape drive heads at the proper location, a rewind time after
the data have been written, and an unmount time. Reducing the number of
m rl&atio;ls . rrv from the disk cache affects the cverhead time whi!e reducing the
number of bytes migrating to robotic storage reduces the data transfer time.

35

9 Conclusion
We evaluated the performance of an online compression algorithm on the
clients of a typical mass storage filesystem. Four different variations of tex-
tual substitution based, dynamic dictionary compression algorithms were
implemented in both a sequential and a pipelined orientation. The eight
different clients developed were tested using two sets of files. The first set
was the Calgary Text Compression Corpus which was used because of its
popularity as a compression performance benchmark and the second set was
a representative collection of files from the NCCS.

The results showed that a good compression algorithm must be capable
of compressing data at a high rate but at the same time it should be able
to attain rather high compression ratios on a variety of file formats. Also,
it seems that a pipelined implementation should definitely be the method
to be used since i t will reduce the cost of compression. From the clients
tested as part of this work it appears that the pipelined clients with the gzip
compression algorithm using a speed parameter of 1 and 6 are the best choice
since they attain a good balance between compression rates and compression
ratios.

The second part of this work involved the evaluation of the effect of
online compression on the effective capacity of the disk cache. A trace driven
simulation of the disk cache was used for the evaluation. The traces used
to drive the simulator were collected from the ftp logs of the system. The
simulation was configured to match the disk space and migration algorithm
of the system at NCCS. The effect of compression was simulated by uniformly
reducing the file size of the get and put requests. Various compression ratios
were used in the simulation. The simulation also evaluated two different
migration algorithms, specifically an LRU based and a size based algorithm.

One important observation that was made about the references at this
mass storage system was that the working set continuously changes. This
implies that the disk cache hit ratio cannot be improved significantly by
increasing the disk cache size since get operations are usually to files that
were stored in the mass storage system a very long time in the past. This
effect was evident by comparing the two migration algorithms against a disk
cache which mas large enough to store all files stored during the three month

36

evaluation period. As a result both algorithms attained hit ratios very close
to the optimal hit ratios of the huge cache. Comparing the two migration
algorithms we found that the size based algorithm decreases the total number
of bytes migrating to tertiary storage at the expense of causing occasional
peaks in the number of files migrating. Both algorithms were not affected by
the compression ratio due to the fact that the disk cache is of large enough
size to cover the intereference pattern of the requests.

Future work will focus on evaluating various prefetching algorithms. The
current simulation suggested that only the use of user hints and an appro-
priate prefetching algorithm can improve the hit ratio of this system. The
use of transparent informed prefetching could be applied to improve the hit
ratio of the disk cache by exploiting application level hints about future file
accesses. Another area of future research is the implementation and evalu-
ation of migration algorithms based on a combination of file size and cache
residency time as described in [8, 91. This simulation analysis showed that
size based migration reduces the number of bytes that migrate to tertiary
storage but occasionally it produces a large number of migration loads. By
using a migration algorithm based on the space time product we expect that
the migration peaks will disappear, while maintaining the lower number of
bytes migrating.

References
[l] Timothy C. Bell, John G. Cleary, Ian H. Witten, “Text Compression”,

Prentice Hall, Englewood Cliffs New Jersey, 1990.

[2] J. Gailly et al. Gzip, Version 1.2.4. Anonymous ftp from prep.ai.mit.edu:
/pub/gnu/gzi p-1 .2.4. t ar .gz.

[3] Randy H. Katz, Thomas E. Anderson, John K. Ousterhout, David A. Pat-
terson, “Robo-line Storage: Low Latency, High Capacity Storage Systems
ower Geographically Distributed Networks”, Technical Report UCB/S2I<-
91-3, University of California, Berkeley, March 1994.

[4] Debra A. Lelewer, Daniel S. Hirschberg, “Data Compression”, ACM Com-
puting Surveys, Voi. lY, No. 3, pp. 261-2Y6, September 1957.

37

[5] Dave Mack, compress version 4.0. Anonymous ftp from gate-
keeper.dec.com: /pub/usenet /comp.sources.misc/volume20/compress.

[6] Ethan L. Miller, Randy H. Katz, “An Analysis of File Migration in a
Unix Supercomputing Environment”, Technical Reports UCB/CSD-92-
712, University of California, Berkeley, March 1993.

[7] Ellen Salmon, NASA Goddard Space Flight Center, Private Communi-
cation.

[8] Alan Jay Smith, “Analysis of Long Term File Reference Patterns for Ap-
plication to File Migration Algorithms”, IEEE Transactions on Software
Engineering, Vol. SE7 , No. 4, pp. 403-417, July 1981.

[9] Alan Jay Smith, “Long Tern File Migration: Development and Eval-
uation of Algorithms”, Communications of the ACM, Vol. 24, No. 8,
PP. 521-532, August 1981.

[lo] Alan Jay Smith, “Cache Memories”, Computing Surveys, Vol. 14, No.
3, pp. 473-530, September 1982.

[ll] James A. Storer, “Data Compression Methods and Theory”, Computer
Science Press, Rockville Maryland, 1988.

[12] Adina Tarshish, Ellen Salmon, “The Growth of the Unitree Mass Storage
System at the NASA Center for Computational Sciences”, 3rd NASA
GSFC Conference on Mass Storage Systems and Technologies, College
Park, Maryland, October 19-21, 1993.

[13] James C. Tilton, Edward Seiler, “CRUSH: A Comparative Lossless
Compression Package, to be presented at the 1994 International Geo-
science and Remote Sensing Symposium, Pasadena, California, August
1994.

[14] Convex Computer Corporation, “Unitree+ System Administration
Guide, First Edition”, Convex Press, Richardson Texas, 1993.

I151 Terry A. Welch, “A Technique for High-Performance Data Compres-
sion”, IEEE Computer, Vol. 17, No. 6, pp. 8-19, June 1984.

38

[16] J. Ziv, A. Lempel, “A Universal Algorithm for Sequential Data Com-
pression”, IEEE Transactions on Information Theory, Vol. 23, No. 3,
pp.337-343, May 1977.

39

Appendix

A The Unitree Central File Manager
The Unitree Central File Manager (UCFM) is a hierarchical distributed
filesystem. UCFM is a mass storage manager which provides a transpar-
ent uniform Unix like file system to the user. The layers of the hierarchy
consist of a pool of hard disks at the first layer which behave as a file cache
for the overall system and robotic tape storage and free-standing tape storage
at the second layer.

The data stored on the UCFM can be accessed from any local machine us-
ing either the FTP protocol or the NFS protocol. For performance reasons
only the FTP protocol method is being used at NASA’s Center for Com-
putational Sciences (NCCS). When files are first transferred to the UCFM
they are stored on the first layer of the hierarchy. Then, through a process
called migration, a copy of each file is made available to a lower layer of
the hierarchy Based on certain configurable parameters files from the highest
layer are removed if they have not been accessed for a certain period of time.
When the user tries to recall the file, UCFM know the highest layer location
of the file and accesses it from there. Thus, files which are accesed often will
be retrieved quickly whereas files which are not accessed too often will have
longer access time. In a sense, the disk at the highest layer is being used as
a cache for the slower lower layers of the hierarchy.

Since most of the research to be conducted will use this specific mass
storage system as a base model, it is very important to understand its archi-
tecture and functionality. The description of this system will be separated
into two different sections. The first section describes the hardware on which
this system is running, their interconnection and configuration. This is im-
portant because any type of contention for resources at this level of the
system may have a significant impact on the performance of the system at
a higher level. The second section describes the software components and
modules which compose the UCFAI.

40

A.l Hardware Architecture
This Unitree runs on a single Unix based mini-computer system as a software
application. The mini-computer is a Unix based Convex C3830 multiproces-
sor with 3 processors. The.first level of the storage hierarchy consists of 75
striped magnetics disks with a total capacity of 155 GB (gegabytes). The
disks are connected to the system using 4 controllers and on each controller
there can be a chain of up to 32 disks. Each controller has four ports to the
32 drives. The Unitree treats the disks as a pool of blocks.

At the next level in the storage hierarchy there are five robotic silos each
with a capacity of 4.8 TB (terabytes). Each silo holds 6000 tapes. There
are currently two types of tapes in the silos; the 3480 tapes which have a
capacity of 200 MB each and the 34903 tapes which can have a capacity
of either 800 MB or 400 MB based on the controller used to format them.
Figure 15 shows the connectivity of each silo to the Convex machine. The
SUN system is used for sending control signals to the silo whereas the data
flows only through the control units.

Each silo has two cartridge drives and each cartridge drive can have 6
tape drives for a total of 12 drives. In this particular installation there are
6 drives per silo and the configuration is 4 drives in one cartridge drive and
2 drives in the other. Figure 16 shows the interface between the Convex
machine and the silos. TLI stands for tape library interface and is an actual
card that is plugged into the Convex bay and forms the interface between the
VME bus of the Convex computer to the FIPS/Block Mux channel of the
silo. There is a total of eight controller units that connect t o the four silos
and they are represented by CU in the figure. This diagram shows only the
data path between the controllers and the silos. All five silos are connected by
their library control unit to the SUN workstation which performs the control
funtions. Library Storage Module (LSM,silo) 4 in the figure is not connected
to a controller because it does not contain any tape drives. I t serves the
purpose of a robotic tape repository and is capable of automatically providing
a specific tape stored in it to any of the other silos.

Since there are eight cont,rollers that connect to the silos the number of
concurrent tape read/write operations is limited to eight by the hardware

41

configuration. In order to obtain as much concurrency as possible, as is
shown in the figure, the silos have been interconnected with the controllers
in complex pattern. Also shown in the figure are the four free-standing tape
controllers. The tape drives are identical to the ones within the robotic units
and so are the tapes used. These tape drives are used for vaulting of files
which means that files stored in tapes in these drives have not been accessed
for a long time so a human operator will have to remove them and place them
in a tape library. Because of this reason it is debatable whether this should
be considered a third layer in the storage hierarchy or whether it should be
part of the second layer of storage.

A.2 Software Architecture
UCFM is composed of a number of servers which manage the storage hier-
archy. Each server is responsible for one specific task and thus the overall
storage management task is distributed. This distribution of the responsi-
bility and the functional separation of the components allows for load dis-
tribution, enhances the scalability of the storage system and provides more
fault tolerance. Figure 17 shows a diagram of the UCFM servers and their
interelation.

Figure 17 basically shows the interconnection of the servers with each
other. It serves as a good overview of the structure of the UCFM but i t is
not detailed enough to form the basis of a queueing network model since it
very general. Based on the request made by the user a job may have to visit
each of the servers more than once and in a different order from what seems
apparent in figure 17. A brief description of each of the servers in the figure
follows.

N a m e Server: Its job is to maintain the Unitree filesystem structure and
provide a transparent, Unix like interface, to the Mass Storage System.
It resolves human-oriented names to a globally unique machine-oriented
resource identifier (bifile id). I t also authenticates access rights of the
requestor.

Disk Server: Provides the logical means for storing and retrieving data
from the disk cache. I maintains the necessary header information for
mapping a bitfile id into the actual file stored on the disk.

42

Disk Mover: Its only purpose is to transfer file data to and from the disk
cache. All requests to read and write data to and from the disk cache
originate from the disk server. A response to each request is sent di-
rectly to the recipient of the file rather t o the disk server.

Tape Server: The tape server performs the equivalent service to tapes that
the disk server performs to the disk cache. Its objective is to maximize
the use of the storage media by archiving files. I t maintains all the
necessary information so that it can retrieve the information back from
the tapes. I t receives requests from the disk server and the migration
server for access to files.

Tape Mover: Its only purpose is to transfer file data to and from the tapes.
I t receives all its requests from the tape server.

Physical Device Manager: Its job is to manage the tape mounts and per-
forms the mapping between bitfile ids and tape ids. It receives requests
to mount tapes from the Tape Server and communicates its requests
to the Physical Volume Repository to mount and dismount tapes.

Physical Volume Repository: Maintains the information abou the loca-
tion of each tape and every storage device available at the tape level.
I t receives requests to mount tapes from the Physical Device Manager
and issues mount commands to the robot or operator.

Migration Server: As its name implies it moves data from the disk cache
to lower levels of storage in the hierarchy in order to increase the size
of the disk cache.

The pool of disks allocated to the UCFM are separated into partitioned
disks to be used by the name server and disks to be used by the disk server.
The disks allocated to the name server are treated as a set of blocks. A
server library, named Cachelib, maintains the 1KB blocks on all the disk
partitions. I t also manages an in-memory cache of 1KB blocks for optimizing
the performance. The first block on each partition is used similarly to the
Unix superblock to maintain the data st,ored in that particular partition.
CaciieiiL rilarlages the free list, lvhich is a list uf all the blocks iiot allocated
to a specific file. Also, its block is sequentially nuinbered from 0 to n - 1 by

43

the Cachelib, where n is the total number of blocks in the primary partitions,
and that number is used to uniquely refer t o a block.

Each partition allocated to the disk server is divided into three sections-
the label, the header space and the body space. The label is 4KB long and
describes the size of the disk partition, the start block for the headers and the
number of headers stored on that partition. A partition can have a maximum
of 2800 headers. The file header is a fixed size data structure and contains file
metadata such as the number of blocks allocated to a file, the actual number
of data blocks written to the file, a link count, a migration flag, the number
of data fragments in the file, pointers to 8 data fragments, pointers to chains,
user id of the owner, group id of the owner, access permissions and others.
The body space is divided into fragments which are multiples of blocks. It
will be described later how the size of a fragment is determined.

The name server manages three types of objects-directories, name space
objects (files) and symbolic links. A B-tree structure is used to store the
directory structure presented to the user. The rest of the objects are stored
in a list. The Name Server writes a 32-byte header in the beginning of each
block used for storing objects. The information stored in that header include
the Node-type (root, branch, leaf), number of entries in the body and the
size used by this entry. Both rood nodes and non-root nodes can be either
branches or leaves. Leaves contain pairs of name/resource id identifiers and
branches contain pointers to leaves or to other branches. In leave nodes along
with the name/resource id pair there is a pointer to a block which contains
the files metadata. That block contains a Name Server Object (NSO) header
and the name of the file. If the files name is less than 16 characters long
then it is stored in the directory entry, else it is stored in the block along
with the metadata. The type of metadate stored include the node type
(NSO), a previous NSO pointer, a block number identifier and a link count.
Figure 18(a) shows an example of a directory structure and figure 18(b) shows
its internal representation within the Name Server.

The disk server manages the disks allocated to it for file storage. Each
such disk is formatted and has file system information on it. The disk server
maintains the following data structures to keep track of the files stored in
the disk cache.

44

Free Space Header Map This map is maintained for each disk partition
allocated to the disk server. It is a bitmap of every free header block
on a partition and is kept in memory.

Free Space Data M a p This map is maintained for each disk partition and
it is kept in memory. It is a bitmap of every data block on the partition.

Search Table This table maps resource identifiers into file header locations
on disk. It is built at initialization and is kept in memory. It contains
an entry for every file stored in the disk cache.

File Header Cache This is a cache of file headers in memory and is used
for improving the performance of the name server and the disk server.
It is indexed by the file resource identifier and is kept in memory.

When a file is created the disk server goes through the following steps.
It first allocates primary header space for the new file in one of the available
partitions using the Free Space Header Map. It then initializes the header
fields, inserts the new hea.der into the Search Table and the File Header
Cache, creates a resource identifier for the file and returns the identifier to
the creator (Name Server or Tape Server). On initial writes space is allocated
in multiples of 64KB, beginning with 64KB all the way up to 4MB. This
happens because network protocols don’t send across the length of the file in
advance. So the first request gets 64KB, the second 64KB, the third 128KB,
the next 192KB and so on up to 4MB. If the file is being brought in from
a lower level in the storage hierarchy then space is allocated using a first-fit
algorithm in the partitions.

When a file is being retrieved from the disk cache a hashing algorithm
is used on the resource id first into the File Header Cache (FHC) and then
into the Search Table. The FHC is updated if the file is found in the Search
Table only. If the file is neither data structures then the request is forwarded
to the Tape Server.

Once the file header is located in the disk the data must be retrieved.
The file header st,ores t,hp fragment. pointers of t.he file iising eight. fragment.

45

pointers and four chain pointers. Figure 19 below describes the format how
the fragments of a file are maintained.

The first 8 fragment pointers contain the following information: the log-
ical partition number where the fragment is located, the logical file block
number of the first data block in the fragment, the number of data blocks
in the fragment and a pointer back to the partition table. A chain pointer
contains the logical file block number of the first header entry, the logical
partition number of the header and the position of the header within its log-
ical block. A fragment header contains 35 fragment pointers, the number of
fragment pointers in use and a pointer back to the file header. A chain header
contains pointers to 47 fragment headers or pointers to 47 chain headers, the
number of pointers in use and a pointer back to the file header.

The error recovery mechanism of the disk server is simple. In order to
preserve the consistency of the header data structures, the tables are updated
only after the data 1/0 completes. If either the Disk Server or the Disk Mover
crash during write to the disk, an error is returned to the requestor process.
Any data that was written to the disk will be ignored since the headers where
not updated.

File purging is also performed by the Disk Server. Purging starts when
either one of two low water marks have been reached. The one is the number
of available free headers and the other is the number of available data blocks.
Upon initialization, the Disk Server creates a master purge task which awak-
ens periodically and checks the high water mark conditions. Files must have
resided on the disk cache for a certain amount of time before they can be
selected for purging. The criteria used for selecting files to purge are the
following:

0 The files dirty bit has been set after it was migrated to a lower level in
the hierarchy.

0 The file has resided in the disk cache for more than the minimum disk
residence time (configurable parameter).

0 The files purge value is large enough. The purge value of a file is
Purge-Val= size * tinieezP where exp is the purge exponent, size is the
file size and time is the disk residency time. If the purge exponent

.

46

is greater than 2 then the algorithm becomes LRU and if it is less
than 1 then it becomes file size based. The default value for the purge
exponent is zero.

Purging stops when either one of the two high water marks have been reached.
The one is the number of free headers and the other is the number of free
data blocks in the disk cache. If the disk partition utilization remains below
both high water marks then the purge process runs through all file headers,
building a list of all migrated, non-active files and orders them according to
their purge value. Once the list is built, the purge process removes each file
on the list in turn from the disk cache.

Files are created in the Disk Cache when an ftp request arrives to put
a file into the UCFM. Figure 20 shows the interaction between the various
servers involved in storing a file into the disk cache.

The steps involved in serving such a request are as follows:

1. The ftp client sends a request to u f t p d to store f i l e 1 into the disk
cache.

2. u f t p d determines whether the file exists by trying to fetch f i l e1 from
the directory.

3. uf tpd sends a request to the Disk Server to create a new file. The Disk
Server allocates spece for a new header, builds the header, inserts i t in
the header cache, writes it to the disk, creates the resource id for the
file and creates an entry in the Search Table and the Header Cache and
finally returns the resource id to the uf tpd.

4. u f t p d causes the Name Server to insert an entry for f i l e1 and its
resource id into the working directory.

5. The Name Server sends an increment link count request to the Disk
Server.

6. The ftp client sends file dat,a to the u f t p d for f i l e l .

7. u f tpd sends a write/append request to the Disk Server for f i l e 1 and
the Disk Seryer allocates space on disk for file dat.a.

\ -

47

8. The Disk Server sends a request to the Disk Mover to obtain data from
uftpd and write to the allocated space on the disk.

9. Data flows to the disk through the Disk Mover.

10. The Disk Mover informs the Disk Server that the write has completed
and the Disk Server updates the fragment list in the file header.

Steps 6-10 are repeated until all file data have been written.

If the operation is an ftp get operation the request is forwarded from
the Name Server to the Disk Server. The Disk Server searches through its
Header Cache and if the resource id is not found there i t searches through
the Search Table. If the file is found in the disk cache then the Disk Server
sends a request to the Disk Mover to obtain the data from the information
stored in the header and pass it to the uf tpd. If the file is not found in
the disk cache then retrieving the file involves moving the file from the tape
to the disk cache and then following the same procedure described above.
Figure 21 shows the sequence of operations needed to cache the file from the
tape into the disk cache.

The steps are as follows:

1. Retrieve the file header from the Tape Server.

2. Once the header is received, insert it into the Disk Server’s Header
Cache and Search Table. The Disk Server saves the state concerning
this transaction and then the connection between the Disk Server and
the Tape Server is broken until the Tape Server has allocated the tape
resources and the tape has been mounted.

3. Once the tape is mounted the Tape Server informs the Disk Server that
its ready and the Disk Server allocates space on disk for bringing in
the file.

4. The Movers are informed of what has to be done and are started.

5. The Movers exchange data in blocks until the file has been copied to
the disk.

48

If the file happens to be on offline tape the file is cached directly to the
disk as if though it was on the robotic ta.pe storage layer. Thus caching is
allowed to skip levels through the storage hierarchy wereas migration is done
level by level. If the ftp request was Is, chmod, chown, dir then only the
file header is retrieved from the Tape Server and not the entire file.

Having discussed the Disk Server lets now move to the Tape Server. In
order to improve its performance the Tape Server maintains all file header
information on disk partitions and all file data in tapes. The format of file
data on tape is shown in figure 22

The tape label is 80 bytes and contains information identifying the tape
and the time first written. The file label is 80 bytes and is not used by the
UCFM. Then there are 3 unused blocks of 15iKB each. The data blocks
represent the file data fragments. Each block is 15iKB each where the first
AKB 2 is a file header and the other 15KBs are file data. The file headers
are used merely for positioning the tape head since the real file headers are
stored on the disk. The data block size of 15;KB and the logical file size of
128 data blocks are optimized sizes for 3480 tapes so other tapes may require
different data block and logical file sizes.

A number of disk partitions are allocated to the Tape Server for storing
its information. Those partitions are divided into two sets: header partitions
and search table partitions. Figure 23a shows the format of header partitions
and figure 23b shows the format of search table partitions.

The header partitions are further divided into primary and secondary
partitions. The transaction block on both header and search table partitions
holds information about writes t o primary and secondary partitions. When
the Tape Server comes up after crashing it reads through the transaction
blocks to check the consistency of the major data structures. The free space
header map is a bitma.p of the available space on the header partitions.
Eeaders are thcn storcd in groups of 11 per 4KB block. The interesting
fields of the primary file header are:

Number of data blocks, in bits, written to the file.

0 The Unix link count, the owners UID and the owners GID.

e Access permissions.

49

0 Number of data fragments in the file.

0 Pointers to three data fragments.

0 A pointer to a fragment table and two pointers t o chain headers.

0 Identifies the header as the first primary or duplicate primary header

The fragment header holds pointers to 13 fragments, and the chain header
holds pointers to 26 chain pointers. Chain pointers point to fragment headers.
Fragment pointers point to data fragments on tape and include the address
of the fragment on tape and the fragment size. The Search Table maps file
resource identifiers into file header locations on the disk. The table is kept in
the search table partitions and contains an entry for every file in the UCFM
that has migrated to the tape at least once. The Tape Map maps allocated
body space on tape. For each tape i t maintains the tape identifier and the
block count which is the number of currently used blocks on the tape. The
Book Sector journals modifications to file headers. The Write Record logs
labels of tapes currently being written and the last block written. This allows
the migration server to begin a migration round at the block following the
last block written at the conclusion of the preceding migration round. The
Tape Server also maintains the File Header Cache which, as its name implies,
caches in main memory the most recently accessed file headers indexed by
the resource identifier.

When the Tape Server receives a request for retrieval or storage of a file it
retrieves the header information, determines the tape identifier of where the
file is stored and sends the request to the Physical Device Manager (PDM).
The PDM maintains two tables in memory: the Array of Tape Devices (ATD)
and the Queue of Mount Requests (QMR). The ATD lists for every request
the tape identifier, the status of the device (available/not available) and the
mode of the request (read/write). The QMR lists for every request the device
identifier where the tape will be mounted, the tape identifier which will be
mounted and the mode of the request. When the PDM receives the request,
it queues i t and forwards i t to the Physical Volume Repository (PVR).

The PVR maintains a Queue of Mount Requests (QMR) and the Loca-
tion Table. The QXlR stores for each request the device identifier, the tape

. I ,

50

identifier and the mode of the request. The location table in this specific im-
plementation is located on the Sun workstation as shown in figure 15. The
PVR forwards the mount request to the Sun. The Location Table maintains
information about the exact location of each tape whether it is in the silo or
on a shelf. Figure 24 shows a trace of a mount request through the various
servers.

The steps for servicing a mount/dismount request are as follows:

1. The Tape Server sends a request to the PDM to mount a particular
tape on any drive. The PDM places the mount request on its QMR.

2. The PDM forwards the mount request to the PVR. The PVR places
the request on its QMR and determines whether the tape is on-line or
off-line storage. If it is on-line the PVR selects the drive for the mount.

3. The PVR issues a mount request to either an on-line mount,ing mech-
anism (i.e., robot) or an off-line mounting mechanism (i.e., operator).

4. The PDM via the Tape hdover, polls all tape drives to determine when
and where a tape is mounted. When the mount completes the PDM
updates its ATD and dequeues the mount request from its mount queue.

5. The PDM sends to the PVR a request to dequeue the mount request
from its QMR when the mount has completed.

6. The PDM replies to the Tape Server when the mount completes with
the tape drive id where the tape is mounted.

7. To servide a dismount requestt he Tape Server sends a dismount re-
quest to the PDM for a particular tape. The PDM gets the tape drive
identifier of where the tape is mounted from its ATD.

8. The PDM issues a rewind/unload command to the tape drive via the
Tape Mover.

9. The PDM sends the dismount request to the PVR, identifying the tape
drive where the tape is mounted.

51

The Migration Server is responsible for migrating files from the disk cache
to robotic tape storage. I t maintains a single table in memory called the
Migration Table (MT). The MT is indexed by file resource identifier and for
each migratable file it lists the file identifier, the size of the file, the time of
last header modification (ctime), the time of last read (atime) and the time
of last body modification (mtime). The Migration Server recieves a list of
migratable files from the Disk Server including the three time statistics for
the file (ctime, atime, mtime). Figure 25 shows a trace of a migration server
run. The steps are as follows:

1. The Migration Server obtains a migratable file list from the Disk Server.
The Migration Server the rumbles through the headers to determine
whether there are enough files to start migration

2. The Migration Server sends a migrate file request to the Tape Server.

3. The Tape Server obtains the file header from the Disk Server, allocates
space on the disk for the header if the file is new and allocates space
on tape for the data if the file size is greater than zero. I t then writes
the header to the disk.

4. The Tape Server then sends a mount request to the PDM for the tape
containing the allocated data blocks.

5. The PDM determines the correct tape and forwards the mount request
to the PVR.

6. The PVR sends the mount request to the mounting mechanism and
the tape is mounted.

7. The PDM senses the tape is in the drive via the Tape Mover and
replies to the Tape Server mit,h the device identifier of where the tape
is mounted.

8. The Tape Server sends the request to the Disk Server.

9. The Disk Server forwards the read request to the Disk Mover.

10. The Tape Server sends a write request to the Tape Mover.

52

11. Data starts to flow from the disk to the socket and then to tape via the
Movers. The Tape Server writes the final header and deallocates any
old fragments in the Tape Map.

12. The Tape Server replies that its done to the migra.tion Server.

13. The Migration Server sends a mark migratable file request to the Disk
Server and the Disk Server marks the file as migrated if it has not been
modified since the migratable file list ha.d been generated.

Steps 8 through the first part of step 11 are repeated until all the data for
each file are read. Steps 2-13 are repeated for each file in the migratable file
list.

53

Cartridge
Drive

Figure 15: Silo/Sun/Convex Connectivity

m
I - - 1 - - I

m

0 I
hlemorex TLI 1 I

- 1
J

54

Figure 16: Interface between Silos and the Convex

55

f \ f 7 f 3 f

Repack
Server

Vault
Migration

Server

Name Migration
Server Server

L

f

Disk Tape
Server Server

L J

/ 3 f 3
Physical

Manager
\ J

Tape
Mover

c Device Disk
Mover

r \

Physical
Volume

Repository

Figure 17: UCFM System Architecture

.

56

I

A
SYS users

testdir

t e s t 1 t e s t 2

directory header

testdir RID

I
LL) cachelib header 1

'11
1p-p-l

file4 RID

I fde6 I RID I

B-tree header B-tree header
I directory header I

Figure 18: Directory Structure Representation by the Name Server

57

Fragment0
Fragment 1

*

Fragment 2
Fragment 3

.............
i Fragment Header

n Chain Header

Figure 19: Fragment and Chain Pointers in File Header

a 1 1 1 .

r

L

~-

58

Nameserver p-1 Disk Server 1
Figure 20: Sequence of Operations in Serving an ftp put Command

59

Disk Mover 4 Disk Server

Tape Mover 4 Tape Server

Figure 21: Sequence of Operations in Caching a File

Figure 22: Format of File Data on Tape

a
P

Transaction
Block

c

FreeSpace
Header Map

Headers

60

I \"iittRecord I Book 1 1 Block 1 Table 1 TapeMap 1 Sector I Sector 1
Figure 23: Format of the Disk Partitions of the Tape Server

61

Tape Mover

I Physical Device Manager I

(Physical Volume Repository
J

On-Line Off -Line

Figure 24: Sequence of Operations in Serving a Mount/Dismount
Request

* ? . , .
r

c

62

(Diskserver I. 77 Disk Mover

1 1
I

Tape Server w
[Physical Device Manager

[Physical Volume Repository]

1 Mounting Mechanism (robot or human) 1
Figure 25: Sequence of Operations of a Migration Run

